Three-dimensional light-scattering and deformation of individual biconcave human blood cells in optical tweezers.

For studying the elastic properties of a biconcave red blood cell using the dual-trap optical tweezers without attaching microbeads to the cell, we implemented a three-dimensional finite element simulation of the light scattering and cell's deformation using the coupled electromagnetic and continuum mechanics modules. We built the vector field of the trapping beams, the cell structure layout, the hyperelastic and viscoelastic cell materials, and we reinforced the constraints on the cell constant volume in the simulation. This computation model can be useful for studying the scattering and the other mechanical properties of the biological cells.

[1]  E. Evans A new material concept for the red cell membrane. , 1973, Biophysical journal.

[2]  A. Krantz,et al.  Red cell-mediated therapy: opportunities and challenges. , 1997, Blood cells, molecules & diseases.

[3]  Huafeng Ding,et al.  Born approximation model for light scattering by red blood cells , 2011, Biomedical optics express.

[4]  Jinhua Zhou,et al.  Calculation of optical forces on an ellipsoid using vectorial ray tracing method. , 2012, Optics express.

[5]  P. Cicuta,et al.  Red blood cell dynamics: from spontaneous fluctuations to non-linear response , 2011 .

[6]  A. Sood,et al.  Optical tweezer for probing erythrocyte membrane deformability , 2009, 1011.3470.

[7]  H. P. Lee,et al.  Using 3D fluid–structure interaction model to analyse the biomechanical properties of erythrocyte , 2008 .

[8]  Risto Myllylä,et al.  Effect of the size and shape of a red blood cell on elastic light scattering properties at the single-cell level , 2011, Biomedical optics express.

[9]  C. Lim,et al.  Mechanics of the human red blood cell deformed by optical tweezers , 2003 .

[10]  Yongkeun Park,et al.  Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum , 2008, Proceedings of the National Academy of Sciences.

[11]  Xin-Hua Hu,et al.  Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method. , 2005, Journal of biomedical optics.

[12]  M. Friebel,et al.  Determination of the complex refractive index of highly concentrated hemoglobin solutions using transmittance and reflectance measurements. , 2005, Journal of biomedical optics.

[13]  Evgeny V Lyubin,et al.  Cellular viscoelasticity probed by active rheology in optical tweezers , 2012, Journal of biomedical optics.

[14]  Satoshi Kawata,et al.  Radiation Force Exerted on Subwavelength Particles near a Nanoaperture , 1999 .

[15]  David W. M. Marr,et al.  Dynamic ray tracing for modeling optical cell manipulation , 2010, Optics express.

[16]  A. Ashkin,et al.  Optical trapping and manipulation of single cells using infrared laser beams , 1987, Nature.

[17]  Y. Sheng,et al.  Modeling highly focused laser beam in optical tweezers with the vector Gaussian beam in the T-matrix method. , 2013, Journal of the Optical Society of America. A, Optics, image science, and vision.

[18]  Yunlong Sheng,et al.  Dynamic deformation of red blood cell in dual-trap optical tweezers. , 2010, Optics express.

[19]  Surface stress on the erythrocyte under laser irradiation with finite-difference time-domain calculation. , 2005, Journal of biomedical optics.

[20]  G. Bosman Erythrocyte aging in sickle cell disease. , 2004, Cellular and molecular biology.

[21]  Yunlong Sheng,et al.  One-dimensional jumping optical tweezers for optical stretching of bi-concave human red blood cells. , 2008, Optics express.

[22]  Y. C. Fung,et al.  Improved measurements of the erythrocyte geometry. , 1972, Microvascular research.

[23]  Stefan Andersson-Engels,et al.  Numerical simulations of light scattering by red blood cells , 2005, IEEE Transactions on Biomedical Engineering.

[24]  R. Skalak,et al.  Strain energy function of red blood cell membranes. , 1973, Biophysical journal.

[25]  Thomas Wriedt,et al.  Light scattering by single erythrocyte: Comparison of different methods , 2006 .

[26]  S. Suresh,et al.  Effect of plasmodial RESA protein on deformability of human red blood cells harboring Plasmodium falciparum , 2007, Proceedings of the National Academy of Sciences.

[27]  Giuseppe Pesce,et al.  Spectroscopical and mechanical characterization of normal and thalassemic red blood cells by Raman Tweezers. , 2008, Optics express.