An analysis on combined GPS/COMPASS data quality and its effect on single point positioning accuracy under different observing conditions

Abstract With the rapid development of the COMPASS system, it is currently capable of providing regional navigation services. In order to test its data quality and performance for single point positioning (SPP), experiments have been conducted under different observing conditions including open sky, under trees, nearby a glass wall, nearby a large area of water, under high-voltage lines and under a signal transmitting tower. To assess the COMPASS data quality, the code multipath, cycle slip occurrence rate and data availability were analyzed and compared to GPS data. The datasets obtained from the experiments have also been utilized to perform combined GPS/COMPASS SPP on an epoch-by-epoch basis using unsmoothed single-frequency code observations. The investigation on the regional navigation performance aims at low-accuracy applications and all tests are made in Changsha, China, using the “SOUTH S82-C” GPS/COMPASS receivers. The results show that adding COMPASS observations can significantly improve the positioning accuracy of single-frequency GPS-only SPP in environments with limited satellite visibility. Since the COMPASS system is still in an initial operational stage, all results are obtained based on a fairly limited amount of data.