The effects of deformation inertia (kinetic energy) in the orbital and spin evolution of close-in bodies

[1]  C. Ragazzo,et al.  Viscoelastic tides: models for use in Celestial Mechanics , 2017 .

[2]  J. Laskar,et al.  Complete spin and orbital evolution of close-in bodies using a Maxwell viscoelastic rheology , 2016, Celestial Mechanics and Dynamical Astronomy.

[3]  J. Wisdom,et al.  Dynamic Elastic Tides , 2016 .

[4]  D. Bambusi A Reversible Nekhoroshev Theorem for Persistence of Invariant Tori in Systems with Symmetry , 2015 .

[5]  G. Dell'Antonio,et al.  A Class of Hamiltonians for a Three-Particle Fermionic System at Unitarity , 2015, 1505.04132.

[6]  C. Ragazzo,et al.  Dynamics of an isolated, viscoelastic, self-gravitating body , 2015 .

[7]  A. Zlenko A celestial-mechanical model for the tidal evolution of the Earth-Moon system treated as a double planet , 2015 .

[8]  J. Laskar,et al.  Deformation and tidal evolution of close-in planets and satellites using a Maxwell viscoelastic rheology , 2014, 1411.1860.

[9]  Francesco Antognini,et al.  The Spin–Orbit Resonances of the Solar System: A Mathematical Treatment Matching Physical Data , 2013, J. Nonlinear Sci..

[10]  R. Eanes,et al.  Constraints on Energy Dissipation in the Earth's Body Tide from Satellite Tracking and Altimetry , 2013 .

[11]  Kiwamu Nishida Earth's Background Free Oscillations , 2013 .

[12]  D. Bambusi,et al.  Asymptotic Behavior of an Elastic Satellite with Internal Friction , 2012, 1212.0816.

[13]  S. Ferraz-Mello Tidal synchronization of close-in satellites and exoplanets. A rheophysical approach , 2012, 1204.3957.

[14]  A. Love Some Problems of Geodynamics; Being an Essay to Which the Adams Prize in the University of Cambridge Was Adjudged in 1911 , 2011 .

[15]  M. Efroimsky Bodily tides near spin–orbit resonances , 2011, 1105.6086.

[16]  James G. Williams,et al.  Tidal torques: a critical review of some techniques , 2008, 0803.3299.

[17]  J. T. Ratcliff,et al.  Lunar rotational dissipation in solid body and molten core , 2001 .

[18]  A. Celletti Analysis of resonances in the spin-orbit problem in Celestial Mechanics: The synchronous resonance (Part I) , 1990 .

[19]  F. Verhulst,et al.  Averaging Methods in Nonlinear Dynamical Systems , 1985 .

[20]  G. Fichera On linear viscoelasticity , 1985 .

[21]  F. Mignard The evolution of the lunar orbit revisited. I , 1979 .

[22]  D. E. Smylie,et al.  On changes in the trace of the Earth's inertia tensor , 1974 .

[23]  Robert E. O'Malley,et al.  Analyzing Multiscale Phenomena Using Singular Perturbation Methods , 1999 .

[24]  Charles F. Yoder,et al.  Astrometric and Geodetic Properties of Earth and the Solar System , 1995 .

[25]  A. Celletti Analysis of resonances in the spin-orbit problem in celestial mechanics , 1989 .

[26]  Subrahmanyan Chandrasekhar,et al.  Ellipsoidal Figures of Equilibrium , 1969 .

[27]  Walter Munk,et al.  The rotation of the earth , 1960 .