Non-Metric Partial Least Squares

In this paper I review covariance-based Partial Least Squares (PLS) methods, focusing on common features of their respective algorithms and optimization criteria. I then show how these algorithms can be ad- justed for use as optimal scaling tools. Three new PLS-type algorithms are proposed for the analysis of one, two or several blocks of variables: the Non- Metric NIPALS, the Non-Metric PLS Regression and the Non-Metric PLS Path Modeling, respectively. These algorithms extend the applicability of PLS methods to data measured on different measurement scales, as well as to variables linked by non-linear relationships.

[1]  ScienceDirect Computational statistics & data analysis , 1983 .

[2]  H. Wold Path Models with Latent Variables: The NIPALS Approach , 1975 .

[3]  Wynne W. Chin,et al.  Handbook of Partial Least Squares , 2010 .

[4]  A. Höskuldsson PLS regression methods , 1988 .

[5]  Gilbert Saporta,et al.  L'analyse des données , 1981 .

[6]  J. Kruskal Nonmetric multidimensional scaling: A numerical method , 1964 .

[7]  Maurizio Vichi,et al.  Classification and multivariate analysis for complex data structures , 2011 .

[8]  Michel Tenenhaus La r?gression PLS: th?orie et pratique , 1998 .

[9]  K. Jöreskog A general method for analysis of covariance structures , 1970 .

[10]  F. Bookstein,et al.  Neurobehavioral effects of prenatal alcohol: Part I. Research strategy. , 1989, Neurotoxicology and teratology.

[11]  F. Bookstein,et al.  Neurobehavioral effects of prenatal alcohol: Part II. Partial least squares analysis. , 1989, Neurotoxicology and teratology.

[12]  R. P. McDonald,et al.  Structural Equations with Latent Variables , 1989 .

[13]  Jörg Henseler,et al.  Handbook of Partial Least Squares: Concepts, Methods and Applications , 2010 .

[14]  Kenneth A. Bollen,et al.  Structural Equations with Latent Variables , 1989 .

[15]  Michel Tenenhaus,et al.  PLS path modeling , 2005, Comput. Stat. Data Anal..

[16]  Forrest W. Young Quantitative analysis of qualitative data , 1981 .

[17]  S. Wold,et al.  The multivariate calibration problem in chemistry solved by the PLS method , 1983 .

[18]  R. Shepard,et al.  A nonmetric variety of linear factor analysis , 1974 .

[19]  Forrest W. Young Methods for describing ordinal data with cardinal models , 1975 .

[20]  L. Tucker An inter-battery method of factor analysis , 1958 .

[21]  Nicole Krämer,et al.  Analysis of High Dimensional Data with Partial Least Squares and Boosting , 2007 .

[22]  J. Leeuw,et al.  The Gifi system of descriptive multivariate analysis , 1998 .

[23]  Forrest W. Young,et al.  Additive structure in qualitative data: An alternating least squares method with optimal scaling features , 1976 .

[24]  M. Hill,et al.  Nonlinear Multivariate Analysis. , 1990 .

[25]  Chikio Hayashi On the prediction of phenomena from qualitative data and the quantification of qualitative data from the mathematico-statistical point of view , 1951 .

[26]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[27]  Stan Lipovetsky,et al.  Identifying critical success factors in defense development projects: A multivariate analysis , 1996 .

[28]  Jacob A. Wegelin,et al.  A Survey of Partial Least Squares (PLS) Methods, with Emphasis on the Two-Block Case , 2000 .

[29]  Roman Rosipal,et al.  Overview and Recent Advances in Partial Least Squares , 2005, SLSFS.

[30]  I. Jolliffe,et al.  Nonlinear Multivariate Analysis , 1992 .

[31]  S. D. Jong SIMPLS: an alternative approach to partial least squares regression , 1993 .

[32]  Michel Tenenhaus,et al.  Analyse en composantes principales d'un ensemble de variables nominales ou numériques , 1977 .

[33]  Jan-Bernd Lohmöller,et al.  Latent Variable Path Modeling with Partial Least Squares , 1989 .

[34]  Christian Derquenne,et al.  A modified PLS path modeling algorithm handling reflective categorical variables and a new model building strategy , 2007, Comput. Stat. Data Anal..

[35]  B. Russett Inequality and Instability: The Relation of Land Tenure to Politics , 1964, World Politics.

[36]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[37]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .

[38]  A. Tenenhaus,et al.  Regularized Generalized Canonical Correlation Analysis , 2011, Eur. J. Oper. Res..

[39]  Michel Tenenhaus,et al.  A Bridge Between PLS Path Modeling and Multi-Block Data Analysis , 2010 .

[40]  Mohamed Hanafi,et al.  PLS Path modelling: computation of latent variables with the estimation mode B , 2007, Comput. Stat..

[41]  A Proposal for Handling Categorical Predictors in PLS Regression Framework , 2011 .

[42]  Forrest W. Young,et al.  The principal components of mixed measurement level multivariate data: An alternating least squares method with optimal scaling features , 1978 .