A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae

A high-density transposon mutagenesis strategy was applied to the Haemophilus influenzae genome to identify genes required for growth or viability. This analysis detected putative essential roles for the products of 259 ORFs of unknown function. Comparisons between complete genomes defined a subset of these proteins in H. influenzae having homologs in Mycobacterium tuberculosis that are absent in Saccharomyces cerevisiae, a distribution pattern that favors their use in development of antimicrobial therapeutics. Three genes within this set are essential for viability in other bacteria. Interfacing the set of essential gene products in H. influenzae with the distribution of homologs in other microorganisms can detect components of unrecognized cellular pathways essential in diverse bacteria. This genome-scale phenotypic analysis identifies potential roles for a large set of genes of unknown function.

[1]  Martin Rosenberg,et al.  Identification of Critical Staphylococcal Genes Using Conditional Phenotypes Generated by Antisense RNA , 2001, Science.

[2]  W. Schumann,et al.  SsrA-Mediated Tagging in Bacillus subtilis , 2001, Journal of bacteriology.

[3]  B Wieland,et al.  Identification of novel essential Escherichia coli genes conserved among pathogenic bacteria. , 2001, Journal of molecular microbiology and biotechnology.

[4]  Paul S. Hoffman,et al.  Systematic Identification of Selective Essential Genes in Helicobacter pylori by Genome Prioritization and Allelic Replacement Mutagenesis , 2001, Journal of bacteriology.

[5]  C. Zwieb,et al.  Binding and cross‐linking of tmRNA to ribosomal protein S1, on and off the Escherichia coli ribosome , 2000, The EMBO journal.

[6]  J. Mekalanos,et al.  Genetic footprinting with mariner-based transposition in Pseudomonas aeruginosa. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[7]  J. Mekalanos,et al.  TnAraOut, A transposon-based approach to identify and characterize essential bacterial genes , 2000, Nature Biotechnology.

[8]  T Horiuchi,et al.  Functional genomics of Escherichia coli in Japan. , 2000, Research in microbiology.

[9]  N. Ogasawara,et al.  Systematic function analysis of Bacillus subtilis genes. , 2000, Research in microbiology.

[10]  M. Wolfgang,et al.  Charged tmRNA but not tmRNA‐mediated proteolysis is essential for Neisseria gonorrhoeae viability , 2000, The EMBO journal.

[11]  W. Eisenreich,et al.  Biosynthesis of terpenoids: YchB protein of Escherichia coli phosphorylates the 2-hydroxy group of 4-diphosphocytidyl-2C-methyl-D-erythritol. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[12]  O. White,et al.  Global transposon mutagenesis and a minimal Mycoplasma genome. , 1999, Science.

[13]  B. M. Lange,et al.  Isopentenyl diphosphate biosynthesis via a mevalonate-independent pathway: isopentenyl monophosphate kinase catalyzes the terminal enzymatic step. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[14]  J. Mekalanos,et al.  Hyperactive transposase mutants of the Himar1 mariner transposon. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[15]  K. Reich,et al.  Genome Scanning in Haemophilus influenzae for Identification of Essential Genes , 1999, Journal of bacteriology.

[16]  R. Sauer,et al.  SmpB, a unique RNA‐binding protein essential for the peptide‐tagging activity of SsrA (tmRNA) , 1999, The EMBO journal.

[17]  J. Mekalanos,et al.  In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[18]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Manuel Peitsch,et al.  A genome-based approach for the identification of essential bacterial genes , 1998, Nature Biotechnology.

[20]  J. Mekalanos,et al.  Systematic identification of essential genes by in vitro mariner mutagenesis. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[21]  J. Bartlett,et al.  GUIDELINES FROM THE INFECTIOUS DISEASES SOCIETY OF AMERICA Community-Acquired Pneumonia in Adults: Guidelines for Management , 1998 .

[22]  C. Lingwood,et al.  Identification of the Key Protein for Zinc Uptake in Hemophilus influenzae * , 1997, The Journal of Biological Chemistry.

[23]  J. Klein Role of nontypeable Haemophilus influenzae in pediatric respiratory tract infections. , 1997, The Pediatric infectious disease journal.

[24]  D Botstein,et al.  Functional Analysis of the Genes of Yeast Chromosome V by Genetic Footprinting , 1996, Science.

[25]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[26]  R. Fleischmann,et al.  Frequency and distribution of DNA uptake signal sequences in the Haemophilus influenzae Rd genome. , 1995, Science.

[27]  R. Fleischmann,et al.  Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. , 1995, Science.

[28]  W. Bishai,et al.  Characterization and virulence analysis of catalase mutants of Haemophilus influenzae , 1994, Infection and immunity.

[29]  H. Smith,et al.  An eleven-base-pair sequence determines the specificity of DNA uptake in Haemophilus transformation. , 1980, Gene.

[30]  M. Vogt,et al.  Defined Nongrowth Media for Stage II Development of Competence in Haemophilus influenzae , 1970, Journal of bacteriology.