Coherence measures and optimal conversion for coherent states

We discuss a general strategy to construct coherence measures. One can build an important class of coherence measures which cover the relative entropy measure for pure states, the l1-norm measure for pure states and the α-entropy measure. The optimal conversion of coherent states under incoherent operations is presented which sheds some light on the coherence of a single copy of a pure state.

[1]  M. Nielsen Conditions for a Class of Entanglement Transformations , 1998, quant-ph/9811053.

[2]  L. Hardy METHOD OF AREAS FOR MANIPULATING THE ENTANGLEMENT PROPERTIES OF ONE COPY OF A TWO-PARTICLE PURE ENTANGLED STATE , 1999, quant-ph/9903001.

[3]  M. Plenio,et al.  Entanglement-Assisted Local Manipulation of Pure Quantum States , 1999, quant-ph/9905071.

[4]  Markus Muller,et al.  Quantifying spatial correlations of general quantum dynamics , 2014, 1409.1770.

[5]  V. Vedral,et al.  Entanglement measures and purification procedures , 1997, quant-ph/9707035.

[6]  R. Spekkens,et al.  Modes of asymmetry: The application of harmonic analysis to symmetric quantum dynamics and quantum reference frames , 2013, 1312.0680.

[7]  Zach DeVito,et al.  Opt , 2017 .

[8]  Heng Fan,et al.  Quantum coherence and correlations in quantum system , 2015, Scientific reports.

[9]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[10]  M. Plenio,et al.  Quantifying Entanglement , 1997, quant-ph/9702027.

[11]  R. Spekkens,et al.  Extending Noether’s theorem by quantifying the asymmetry of quantum states , 2014, Nature Communications.

[12]  Artur Ekert,et al.  Witnessing quantum coherence in the presence of noise , 2013, 1312.5724.

[13]  Heng Fan,et al.  Fidelity and trace-norm distances for quantifying coherence , 2014, 1410.8327.

[14]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[15]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[16]  Guifre Vidal Entanglement monotones , 1998, quant-ph/9807077.

[17]  M. Plenio,et al.  Quantifying coherence. , 2013, Physical review letters.

[18]  M. Plenio,et al.  MINIMAL CONDITIONS FOR LOCAL PURE-STATE ENTANGLEMENT MANIPULATION , 1999, quant-ph/9903054.

[19]  G. Vidal Entanglement of pure states for a single copy , 1999, quant-ph/9902033.

[20]  R. Bhatia Matrix Analysis , 1996 .

[21]  G. Vidal On the characterization of entanglement , 1998 .

[22]  References , 1971 .

[23]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[24]  Shuan-ping Du,et al.  The Wigner-Yanase information can increase under phase sensitive incoherent operations , 2015, 1505.00151.