Tuning the thermal conductivity of silicene with tensile strain and isotopic doping: A molecular dynamics study

Silicene is a monolayer of silicon atoms arranged in honeycomb lattice similar to graphene. We study the thermal transport in silicene by using non-equilibrium molecular dynamics simulations. We focus on the effects of tensile strain and isotopic doping on the thermal conductivity, in order to tune the thermal conductivity of silicene. We find that the thermal conductivity of silicene, which is shown to be only about 20% of that of bulk silicon, increases at small tensile strains but decreases at large strains. We also find that isotopic doping of silicene results in a U-shaped change of the thermal conductivity for the isotope concentration varying from 0% to 100%. We further show that ordered doping (isotope superlattice) leads to a much larger reduction in thermal conductivity than random doping. Our findings are important for the thermal management in silicene-based electronic devices and for thermoelectric applications of silicene.

[1]  Mehdi Asheghi,et al.  Phonon–boundary scattering in ultrathin single-crystal silicon layers , 2004 .

[2]  P. Perfetti,et al.  sp2-like hybridization of silicon valence orbitals in silicene nanoribbons , 2011 .

[3]  F. Müller-Plathe A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity , 1997 .

[4]  Kenneth E. Goodson,et al.  Phonon scattering in silicon films with thickness of order 100 nm , 1999 .

[5]  K. Kugel,et al.  A stable "flat" form of two-dimensional crystals: could graphene, silicene, germanene be minigap semiconductors? , 2012, Nano letters.

[6]  J. Tersoff,et al.  Empirical interatomic potential for silicon with improved elastic properties. , 1988, Physical review. B, Condensed matter.

[7]  Patrick Vogt,et al.  Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. , 2012, Physical review letters.

[8]  M. Buehler,et al.  Strain controlled thermomutability of single-walled carbon nanotubes , 2009, Nanotechnology.

[9]  Tammie L. Borders,et al.  Isotope effect on the thermal conductivity of graphene , 2010, 1007.1496.

[10]  S. Phillpot,et al.  Comparison of atomic-level simulation methods for computing thermal conductivity , 2002 .

[11]  Taku Ohara,et al.  Thermal conductivity of silicon nanowire by nonequilibrium molecular dynamics simulations , 2009 .

[12]  Nuo Yang,et al.  Ultralow thermal conductivity of isotope-doped silicon nanowires. , 2008, Nano letters.

[13]  Dapeng Yu,et al.  Tunable bandgap in silicene and germanene. , 2012, Nano letters.

[14]  Sokrates T. Pantelides,et al.  Dynamical simulations of nonequilibrium processes — Heat flow and the Kapitza resistance across grain boundaries , 1997 .

[15]  C. Ouyang,et al.  Strain-induced semimetal-metal transition in silicene , 2012 .

[16]  Baowen Li,et al.  Isotopic effects on the thermal conductivity of graphene nanoribbons: Localization mechanism , 2010, 1007.5358.

[17]  V. Shenoy,et al.  Carbon isotope doping induced interfacial thermal resistance and thermal rectification in graphene , 2012 .

[18]  X. Ruan,et al.  Tuning the thermal conductivity of graphene nanoribbons by edge passivation and isotope engineering: A molecular dynamics study , 2010, 1008.1288.

[19]  Amelia Carolina Sparavigna,et al.  On the isotope effect in thermal conductivity of silicon , 2004 .

[20]  G. G. Guzmán-Verri,et al.  Electronic structure of silicon-based nanostructures , 2007, 1107.0075.

[21]  An investigation of thermal conductivity of silicon as a function of isotope concentration by molecular dynamics , 2004 .

[22]  Ling Ti Kong,et al.  Phonon dispersion measured directly from molecular dynamics simulations , 2011, Comput. Phys. Commun..

[23]  M. Baskes,et al.  Modified embedded-atom potentials for cubic materials and impurities. , 1992, Physical review. B, Condensed matter.

[24]  A. H. Castro Neto,et al.  Strain engineering of graphene's electronic structure. , 2009, Physical review letters.

[25]  R. Ruoff,et al.  Thermal transport across twin grain boundaries in polycrystalline graphene from nonequilibrium molecular dynamics simulations. , 2011, Nano letters.

[26]  S. Phillpot,et al.  Thermal transport in polyethylene and at polyethylene–diamond interfaces investigated using molecular dynamics simulation , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[27]  J. Grossman,et al.  Thermal transport in functionalized graphene. , 2012, ACS nano.

[28]  G. Ciccotti,et al.  Stationary nonequilibrium states by molecular dynamics. Fourier's law , 1982 .

[29]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[30]  Yiying Wu,et al.  Thermal conductivity of individual silicon nanowires , 2003 .

[31]  Hasan Sahin,et al.  Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations , 2009, 0907.4350.

[32]  G. Pourtois,et al.  Vibrational properties of silicene and germanene , 2012, Nano Research.

[33]  A. H. Wapstra,et al.  The AME2003 atomic mass evaluation . (II). Tables, graphs and references , 2003 .

[34]  A. Seitsonen,et al.  A review on silicene - New candidate for electronics , 2012 .

[35]  Yong-Wei Zhang,et al.  Thermal conductivity of fluorinated graphene: A non-equilibrium molecular dynamics study , 2012 .

[36]  Size-dependent thermal conductivity of nanoscale semiconducting systems , 2006, cond-mat/0603233.

[37]  Ronaldo Mota,et al.  Ab initio calculations for a hypothetical material: Silicon nanotubes , 2000 .

[38]  V. Fal’ko,et al.  Electrically tunable band gap in silicene , 2011, 1112.4792.

[39]  E. Akturk,et al.  Two- and one-dimensional honeycomb structures of silicon and germanium. , 2008, Physical review letters.

[40]  Wenjun Zhu,et al.  First-principles calculations of mechanical and electronic properties of silicene under strain , 2012 .

[41]  I. Puri,et al.  Thermal conductivity reduction through isotope substitution in nanomaterials: predictions from an analytical classical model and nonequilibrium molecular dynamics simulations. , 2011, Nanoscale.

[42]  Huai Sun,et al.  Thermal conductivity of silicon and carbon hybrid monolayers: a molecular dynamics study , 2012, Journal of Molecular Modeling.

[43]  Peng Cheng,et al.  Evidence of silicene in honeycomb structures of silicon on Ag(111). , 2012, Nano letters.

[44]  Abdelkader Kara,et al.  Graphene-like silicon nanoribbons on Ag(110): A possible formation of silicene , 2010 .

[45]  Andreoni,et al.  Structure of nanoscale silicon clusters. , 1994, Physical review letters.

[46]  Yong-Wei Zhang,et al.  A theoretical analysis of the thermal conductivity of hydrogenated graphene , 2011 .

[47]  C. Ottaviani,et al.  1D graphene-like silicon systems: silicene nano-ribbons , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[48]  Y. P. Chen,et al.  Thermal transport of isotopic-superlattice graphene nanoribbons with zigzag edge , 2009 .

[49]  A. McGaughey,et al.  Size effects in molecular dynamics thermal conductivity predictions , 2010 .

[50]  R. Jones,et al.  Towards more accurate molecular dynamics calculation of thermal conductivity: Case study of GaN bulk crystals , 2009, 1206.5445.

[51]  Xingao Gong,et al.  Thermal conductivity of graphene nanoribbons , 2009 .

[52]  Ning Wei,et al.  Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility , 2011, Nanotechnology.

[53]  R. W. Henn,et al.  Thermal conductivity of isotopically enriched silicon , 2000 .

[54]  H. J. Liu,et al.  Thermoelectric properties of armchair and zigzag silicene nanoribbons. , 2012, Physical chemistry chemical physics : PCCP.

[55]  P. Klemens The Scattering of Low-Frequency Lattice Waves by Static Imperfections , 1955 .

[56]  D. Poulikakos,et al.  Si/Ge superlattice nanowires with ultralow thermal conductivity. , 2012, Nano letters.

[57]  Strain effects on basal-plane hydrogenation of graphene: A first-principles study , 2010 .

[58]  Renqin Zhang,et al.  Vacancy-defect–induced diminution of thermal conductivity in silicene , 2012 .

[59]  Noriaki Takagi,et al.  Structure of Silicene Grown on Ag(111) , 2012 .

[60]  J. Tersoff,et al.  Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. , 1989, Physical review. B, Condensed matter.