Quantification of Uncertainty in Relative Permeability for Coarse-Scale Reservoir Simulation

Reservoir simulation to predict production performance requires two steps: one is history-matching, and the other is uncertainty quantification in forecasting. In the process of history-matching, rock relative permeability curves are often altered to reproduce production data. However, guidelines for changing the shape of the curves have not been clearly established. The aim of this paper is to clarify the possible influence of relative permeabilities on reservoir simulation using the uncertainty envelope. We propose a method for adjusting the shape of relative permeability curves during history-matching at the coarse scale, using the Neighbourhood Approximation algorithm and B-spline parameterisation. After generating multiple history-matched models, we quantify the uncertainty envelope in a Bayesian framework. Our approach aims at encapsulating sub-grid heterogeneity in multi-phase functions directly in the coarse-scale model, and predicting uncertainty. In this sense, the framework diers from conventional procedures which perturb fine-scale features, upscale the models and evaluate each performance. In addition, B-spline parameterisation is flexible allowing the capture of local features in the relative permeability curves. The results of synthetic cases showed that the lack of knowledge of the subgrid permeability and the insucient

[1]  Bush,et al.  Top-Down Reservoir Modelling , 2004 .

[2]  K. Aziz,et al.  Relative Permeability From Centrifuge Data , 1986 .

[3]  Kari Nordaas Kulkarni,et al.  Estimating Relative Permeability from Production Data: A Streamline Approach , 1999 .

[4]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[5]  S. E. Buckley,et al.  Mechanism of Fluid Displacement in Sands , 1942 .

[6]  Alannah Eileen O'Sullivan,et al.  Modelling simulation error for improved reservoir prediction , 2004 .

[7]  Michael Andrew Christie,et al.  Quantifying prediction uncertainty in reservoir modelling using streamline simulation , 2002 .

[8]  Michael Andrew Christie,et al.  Analytical Calculation of Coarse-Grid Corrections for Use in Pseudofunctions , 1998 .

[9]  G. L. Chierici,et al.  Novel relations for drainage and imbibition relative permeabilities , 1984 .

[10]  J. R. Kyte,et al.  New Pseudo Functions To Control Numerical Dispersion , 1975 .

[11]  Akhil Datta-Gupta,et al.  Multiscale Data Integration Using Markov Random Fields , 2000 .

[12]  J. W. Barker,et al.  A critical review of the use of pseudo-relative permeabilities for upscaling , 1997 .

[13]  M. Sambridge Geophysical inversion with a neighbourhood algorithm—II. Appraising the ensemble , 1999 .

[14]  Michael Andrew Christie,et al.  A Strategy for Rapid Quantification of Uncertainty in Reservoir Performance Prediction , 2003 .

[15]  Michael Andrew Christie,et al.  Uncertainty reduction in reservoir modelling , 2002 .

[16]  S. Subbeya,et al.  Prediction under uncertainty in reservoir modeling , 2004 .

[17]  William H. Press,et al.  Numerical recipes in C , 2002 .

[18]  M. Sambridge,et al.  Quantifying Uncertainty in Flow Functions Derived from SCAL Data , 2006 .

[19]  Michael Andrew Christie,et al.  Tenth SPE Comparative Solution Project: a comparison of upscaling techniques , 2001 .

[20]  P. D. Kerig,et al.  A regression-based method for estimating relative permeabilities from displacement experiments , 1988 .

[21]  Karl Dunbar Stephen,et al.  Multi-Stage Upscaling: Selection of Suitable Methods , 2005 .

[22]  Akhil Datta-Gupta,et al.  A Multiscale Approach to Production Data Integration Using Streamline Models , 1999 .

[23]  P. C. Richmond,et al.  Estimation of Multiphase Flow Functions From Displacement Experiments , 1990 .

[24]  John Skilling,et al.  Data analysis : a Bayesian tutorial , 1996 .

[25]  Yu Ding,et al.  Scaling-up in the Vicinity of Wells in Heterogeneous Field , 1995 .

[26]  L. Durlofsky,et al.  Scaleup in the Near-Well Region , 2000 .

[27]  Michael Andrew Christie,et al.  Upscaling for reservoir simulation , 1996 .

[28]  Michael Andrew Christie,et al.  Multiple history-matched models for Teal South , 2002 .

[29]  J. W. Barker,et al.  An analysis of dynamic pseudo-relative permeability methods for oil-water flows , 1999, Petroleum Geoscience.

[30]  M. Sambridge Geophysical inversion with a neighbourhood algorithm—I. Searching a parameter space , 1999 .

[31]  Martin J. Blunt,et al.  Tenth SPE Comparative Solution Project: a comparison of upscaling techniques , 2001 .

[32]  Michael Andrew Christie,et al.  Prediction under uncertainty in reservoir modeling , 2002 .

[33]  P. Dupouy,et al.  Grouping pseudo relative permeability curves , 1998 .

[34]  Xian-Huan Wen,et al.  Efficient Conditioning of 3D Fine-Scale Reservoir Model To Multiphase Production Data Using Streamline-Based Coarse-Scale Inversion and Geostatistical Downscaling , 1999 .

[35]  Clayton V. Deutsch,et al.  GSLIB: Geostatistical Software Library and User's Guide , 1993 .