First principles investigation of tunnel FETs based on nanoribbons from topological two-dimensional materials.

We explore nanoribbons from topological two-dimensional stanene as a channel material in tunnel field effect transistors. This novel technological option offers the possibility of building pure one-dimensional (1D) channel devices (comprised of a 1D chain of atoms) due to localized states placed at the nanoribbon edges. The investigation is based on first-principles calculations and multi-scale transport simulations to assess the performance of devices against industry requirements and their robustness with respect to technological issues like line edge roughness, detrimental for nanoribbons. We will show that edge states are robust with respect to the presence of non-idealities (e.g., atom vacancies at the edges), and that 1D-channel TFETs exhibit interesting potential for digital applications and room for optimization in order to improve the ION/IOFF at the levels required by the ITRS, while opening a path for the exploration of new device concepts at the ultimate scaling limits.

[1]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[2]  S. Datta Nanoscale device modeling: the Green’s function method , 2000 .

[3]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[4]  G. Fiori,et al.  Simulation of Graphene Nanoribbon Field-Effect Transistors , 2007, IEEE Electron Device Letters.

[5]  Jing Guo,et al.  Performance Comparison of Graphene Nanoribbon FETs With Schottky Contacts and Doped Reservoirs , 2008, IEEE Transactions on Electron Devices.

[6]  E. Tutuc,et al.  Bilayer PseudoSpin Field-Effect Transistor (BiSFET): A Proposed New Logic Device , 2009, IEEE Electron Device Letters.

[7]  A. MacDonald,et al.  Theory of interedge superexchange in zigzag edge magnetism. , 2008, Physical review letters.

[8]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[9]  Wolfgang Porod,et al.  Device and Architecture Outlook for Beyond CMOS Switches , 2010, Proceedings of the IEEE.

[10]  M. Luisier,et al.  Simulation of nanowire tunneling transistors: From the Wentzel–Kramers–Brillouin approximation to full-band phonon-assisted tunneling , 2010 .

[11]  S. Ciraci,et al.  Armchair nanoribbons of silicon and germanium honeycomb structures , 2010, 1001.1601.

[12]  Qin Zhang,et al.  Low-Voltage Tunnel Transistors for Beyond CMOS Logic , 2010, Proceedings of the IEEE.

[13]  H. Manoharan Topological insulators: A romance with many dimensions. , 2010, Nature nanotechnology.

[14]  O. Yazyev Emergence of magnetism in graphene materials and nanostructures , 2010, 1004.2034.

[15]  Isabelle Ferain,et al.  Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors , 2011, Nature.

[16]  N. Peres,et al.  Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures , 2011, Science.

[17]  G. Fiori,et al.  Quantum transport modeling of defected graphene nanoribbons , 2012 .

[18]  Patrick Vogt,et al.  Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. , 2012, Physical review letters.

[19]  N. Marzari,et al.  Maximally-localized Wannier Functions: Theory and Applications , 2011, 1112.5411.

[20]  R. Lake,et al.  Doping, Tunnel Barriers, and Cold Carriers in InAs and InSb Nanowire Tunnel Transistors , 2012, IEEE Transactions on Electron Devices.

[21]  Gong Gu,et al.  SymFET: A Proposed Symmetric Graphene Tunneling Field-Effect Transistor , 2012, IEEE Transactions on Electron Devices.

[22]  L. Selmi,et al.  Strain-Induced Performance Improvements in InAs Nanowire Tunnel FETs , 2012, IEEE Transactions on Electron Devices.

[23]  H. Riel,et al.  Tunneling and Occupancy Probabilities: How Do They Affect Tunnel-FET Behavior? , 2013, IEEE Electron Device Letters.

[24]  Giuseppe Iannaccone,et al.  Multiscale Modeling for Graphene-Based Nanoscale Transistors , 2013, Proceedings of the IEEE.

[25]  N. Nagaosa,et al.  Interference of topologically protected edge states in silicene nanoribbons , 2013, 1301.6337.

[26]  Hongzheng Chen,et al.  Graphene-like two-dimensional materials. , 2013, Chemical reviews.

[27]  Debdeep Jena,et al.  Tunneling Transistors Based on Graphene and 2-D Crystals , 2013, Proceedings of the IEEE.

[28]  P. B. Pillai,et al.  Are carbon nanotubes still a viable option for ITRS 2024? , 2013, 2013 IEEE International Electron Devices Meeting.

[29]  R. Ghosh,et al.  Monolayer Transition Metal Dichalcogenide Channel-Based Tunnel Transistor , 2013, IEEE Journal of the Electron Devices Society.

[30]  F. Bechstedt,et al.  Influence of edge and field effects on topological states of germanene nanoribbons from self-consistent calculations , 2014 .

[31]  G. Fiori,et al.  An Open-Source Multiscale Framework for the Simulation of Nanoscale Devices , 2014, IEEE Transactions on Electron Devices.

[32]  Giuseppe Iannaccone,et al.  Two-Dimensional Tunnel Transistors Based on ${\rm Bi}_{2}{\rm Se}_{3}$ Thin Film , 2014, IEEE Electron Device Letters.

[33]  Giuseppe Iannaccone,et al.  Electronics based on two-dimensional materials. , 2014, Nature nanotechnology.

[34]  L. M. Woods,et al.  Tunable Spin-Dependent Properties of Zigzag Silicene Nanoribbons , 2014 .

[35]  D. Esseni,et al.  Single particle transport in two-dimensional heterojunction interlayer tunneling field effect transistor , 2013, 1312.2557.

[36]  A. Seabaugh,et al.  Tunnel Field-Effect Transistors: State-of-the-Art , 2014, IEEE Journal of the Electron Devices Society.

[37]  M. E. Dávila,et al.  Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene , 2014, 1406.2488.

[38]  J. Appenzeller,et al.  Toward low-power electronics: tunneling phenomena in transition metal dichalcogenides. , 2014, ACS nano.

[39]  P. Ajayan,et al.  A subthermionic tunnel field-effect transistor with an atomically thin channel , 2015, Nature.

[40]  A. Kis,et al.  Optically active quantum dots in monolayer WSe2. , 2014, Nature nanotechnology.

[41]  Dong Qian,et al.  Epitaxial growth of two-dimensional stanene. , 2015, Nature materials.

[42]  Jing Guo,et al.  Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. , 2015, ACS nano.

[43]  G. Guo,et al.  Tunable magnetic states on the zigzag edges of hydrogenated and halogenated group-IV nanoribbons , 2016, Scientific Reports.

[44]  Yu Jia,et al.  Spin-orbit coupling effects on electronic structures in stanene nanoribbons. , 2016, Physical chemistry chemical physics : PCCP.

[45]  K. Novoselov,et al.  APPLIED PHYSICS 2 D materials and van der Waals heterostructures , 2016 .

[46]  G. Fiori,et al.  Performance of arsenene and antimonene double-gate MOSFETs from first principles , 2016, Nature Communications.

[47]  Phelim Bradley,et al.  Corrigendum: Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis , 2016, Nature Communications.

[48]  A. Neto,et al.  Controlling many-body states by the electric-field effect in a two-dimensional material , 2016, Nature.

[49]  Anh Khoa Augustin Lu,et al.  Topological to trivial insulating phase transition in stanene , 2016, Nano Research.

[50]  K. Novoselov,et al.  2D materials and van der Waals heterostructures , 2016, Science.

[51]  Alessandro Molle,et al.  Buckled two-dimensional Xene sheets. , 2017, Nature materials.

[52]  M. Fischetti,et al.  Imperfect two-dimensional topological insulator field-effect transistors , 2017, Nature Communications.