A Lyapunov approach to incremental stability properties

Deals with several notions of incremental stability. In other words, the focus is on stability of trajectories with respect to one another, rather than with respect to some attractor. The aim is to present a framework for understanding such questions fully compatible with the well-known input-to-state stability approach. Applications of the newly introduced stability notions are also discussed.

[1]  G. P. Szegö,et al.  Stability theory of dynamical systems , 1970 .

[2]  Eduardo Sontag Smooth stabilization implies coprime factorization , 1989, IEEE Transactions on Automatic Control.

[3]  Xiaoming Hu On state observers for nonlinear systems , 1991 .

[4]  J. Tsinias Sontag's “input to state stability condition” and global stabilization using state detection , 1993 .

[5]  L. Praly,et al.  Stabilization by output feedback for systems with ISS inverse dynamics , 1993 .

[6]  Zhong-Ping Jiang,et al.  Small-gain theorem for ISS systems and applications , 1994, Math. Control. Signals Syst..

[7]  Eduardo Sontag,et al.  Changing supply functions in input/state stable systems , 1995, IEEE Trans. Autom. Control..

[8]  Eduardo Sontag,et al.  On characterizations of the input-to-state stability property , 1995 .

[9]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[10]  A. Teel,et al.  Tools for Semiglobal Stabilization by Partial State and Output Feedback , 1995 .

[11]  Eduardo Sontag,et al.  New characterizations of input-to-state stability , 1996, IEEE Trans. Autom. Control..

[12]  Vincent Fromion,et al.  Robustness and stability of LPV plants through frozen systems analysis , 1996 .

[13]  H. Khalil,et al.  Asymptotic regulation of minimum phase nonlinear systems using output feedback , 1996, IEEE Trans. Autom. Control..

[14]  Yuandan Lin,et al.  A Smooth Converse Lyapunov Theorem for Robust Stability , 1996 .

[15]  Yuan Wang,et al.  Stabilization in spite of matched unmodeled dynamics and an equivalent definition of input-to-state stability , 1996, Math. Control. Signals Syst..

[16]  S. Monaco,et al.  Asymptotic properties of incrementally stable systems , 1996, IEEE Trans. Autom. Control..

[17]  Eduardo Sontag,et al.  Output-to-state stability and detectability of nonlinear systems , 1997 .

[18]  Vincent Promion Some results on the behavior of Lipschitz continuous systems , 1997, 1997 European Control Conference (ECC).

[19]  G. Scorletti,et al.  Nonlinear performance of a PI controlled missile: an explanation , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[20]  Fabian R. Wirth,et al.  Asymptotic stability equals exponential stability, and ISS equals finite energy gain---if you twist your eyes , 1998, math/9812137.

[21]  Jean-Jacques E. Slotine,et al.  Contraction analysis: a practical approach to nonlinear control applications , 1998, Proceedings of the 1998 IEEE International Conference on Control Applications (Cat. No.98CH36104).

[22]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Non-linear Systems , 1998, Autom..

[23]  Andrea Bacciotti,et al.  Liapunov and lagrange stability: Inverse theorems for discontinuous systems , 1998, Math. Control. Signals Syst..

[24]  Eduardo Sontag,et al.  A version of a converse Lyapunov theorem for input-output to state stability , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[25]  Alexander L. Fradkov,et al.  Frequency-domain conditions for global synchronization of nonlinear systems driven by a multiharmonic external signal , 1999, 1999 European Control Conference (ECC).

[26]  Petar V. Kokotovic,et al.  Constructive nonlinear control: Progress in the 90''s , 1999 .

[27]  A. Teel,et al.  A Smooth Lyapunov Function from a Class-kl Estimate Involving Two Positive Semideenite Functions , 1999 .

[28]  Alberto Isidori,et al.  Nonlinear Control Systems II , 1999 .

[29]  Eduardo Sontag,et al.  Forward Completeness, Unboundedness Observability, and their Lyapunov Characterizations , 1999 .

[30]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Nonlinear Systems Analyzing stability differentially leads to a new perspective on nonlinear dynamic systems , 1999 .

[31]  Eduardo Sontag,et al.  Notions of input to output stability , 1999, Systems & Control Letters.

[32]  A. Teel,et al.  A smooth Lyapunov function from a class- ${\mathcal{KL}}$ estimate involving two positive semidefinite functions , 2000 .

[33]  Eduardo D. Sontag,et al.  Input-Output-to-State Stability , 2001, SIAM J. Control. Optim..

[34]  F. Riesz FUNCTIONAL ANALYSIS , 2020, Systems Engineering Principles and Practice.