Computational and Structural Advantages of Circular Boundary Representation
暂无分享,去创建一个
[1] Godfried T. Toussaint,et al. An Efficient Algorithm for Decomposing a Polygon into Star-Shaped Polygons , 1981 .
[2] Martin Held,et al. Biarc approximation of polygons within asymmetric tolerance bands , 2005, Comput. Aided Des..
[3] Franz Aurenhammer,et al. Medial axis computation for planar free-form shapes , 2009, Comput. Aided Des..
[4] Xunnian Yang,et al. Efficient circular arc interpolation based on active tolerance control , 2002, Comput. Aided Des..
[5] Gershon Elber,et al. Bisector curves of planar rational curves , 1998, Comput. Aided Des..
[6] Ioannis Z. Emiris,et al. The Predicates for the Exact Voronoi Diagram of Ellipses under the Euclidiean Metric , 2008, Int. J. Comput. Geom. Appl..
[7] Wendelin L. F. Degen. Exploiting curvatures to compute the medial axis for domains with smooth boundary , 2004, Comput. Aided Geom. Des..
[8] R. Farouki,et al. Voronoi diagram and medial axis algorithm for planar domains with curved boundaries I. Theoretical foundations , 1999 .
[9] D. Walton,et al. Spiral arc spline approximation to a planar spiral , 1999 .
[10] Dereck S. Meek,et al. Approximation of a planar cubic Bézier spiral by circular arcs , 1996 .
[11] Tamal K. Dey,et al. Approximate medial axis as a voronoi subcomplex , 2002, SMA '02.
[12] David Avis,et al. A Linear Algorithm for Finding the Convex Hull of a Simple Polygon , 1979, Inf. Process. Lett..
[13] Francis Y. L. Chin,et al. Finding the Medial Axis of a Simple Polygon in Linear Time , 1995, ISAAC.
[14] D. Walton,et al. Approximating smooth planar curves by arc splines , 1995 .
[15] F. Frances Yao,et al. Finding the Convex Hull of a Simple Polygon , 1983, J. Algorithms.
[16] Chee-Keng Yap,et al. AnO(n logn) algorithm for the voronoi diagram of a set of simple curve segments , 1987, Discret. Comput. Geom..
[17] J. Koch,et al. Geometric Hermite interpolation with maximal orderand smoothness , 1996, Comput. Aided Geom. Des..
[18] Bert Jüttler,et al. Approximating curves and their offsets using biarcs and Pythagorean hodograph quintics , 2006, Comput. Aided Des..
[19] Tamal K. Dey,et al. Approximating the Medial Axis from the Voronoi Diagram with a Convergence Guarantee , 2003, Algorithmica.
[20] Robert E. Tarjan,et al. Triangulating a Simple Polygon , 1978, Inf. Process. Lett..
[21] Hwan Pyo Moon,et al. MATHEMATICAL THEORY OF MEDIAL AXIS TRANSFORM , 1997 .
[22] S. Y. Wong,et al. An optimization approach for biarc curve-fitting of B-spline curves , 1996, Comput. Aided Des..
[23] Franco P. Preparata,et al. Location of a Point in a Planar Subdivision and Its Applications , 1977, SIAM J. Comput..
[24] Hazel Everett,et al. The Graham scan triangulates simple polygons , 1990, Pattern Recognit. Lett..
[25] Hossam A. ElGindy,et al. A new linear convex hull algorithm for simple polygons , 1984, IEEE Trans. Inf. Theory.
[26] Astrid Sturm,et al. Approximation of an open polygonal curve with a minimum number of circular arcs and biarcs , 2008, Comput. Geom..
[27] Kurt Mehlhorn,et al. Fast Triangulation of the Plane with Respect to Simple Polygons , 1985, Inf. Control..
[28] David P. Dobkin,et al. Computational geometry in a curved world , 1990, Algorithmica.
[29] D. T. Lee,et al. Medial Axis Transformation of a Planar Shape , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[30] Otfried Cheong,et al. The Voronoi Diagram of Curved Objects , 2005, Discret. Comput. Geom..
[31] Kurt Mehlhorn,et al. Randomized Incremental Construction of Abstract Voronoi Diagrams , 1993, Comput. Geom..
[32] Avraham A. Melkman,et al. On-Line Construction of the Convex Hull of a Simple Polyline , 1987, Inf. Process. Lett..
[33] F. Chazal,et al. Stability and Finiteness Properties of Medial Axis and Skeleton , 2004 .
[34] Ronald L. Graham,et al. An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set , 1972, Inf. Process. Lett..