Duality-based adaptivity in finite element discretization of heterogeneous multiscale problems

Abstract This paper introduces an framework for adaptivity for a class of heterogeneous multiscale finite element methods for elliptic problems, which is suitable for a posteriori error estimation with separated quantification of the model error as well as the macroscopic and microscopic discretization errors. The method is derived within a general framework for ‘goal-oriented’ adaptivity, the so-called Dual Weighted Residual (DWR) method. This allows for a systematic a posteriori balancing of multiscale modeling and discretization. The developed method is tested numerically at elliptic diffusion problems for different types of heterogeneous oscillatory coefficients.

[1]  E. Weinan,et al.  Analysis of the heterogeneous multiscale method for elliptic homogenization problems , 2004 .

[2]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[3]  R. Hill On constitutive macro-variables for heterogeneous solids at finite strain , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[4]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[5]  Patrick Henning,et al.  A Note on Homogenization of Advection-Diffusion Problems with Large Expected Drift , 2011 .

[6]  Endre Süli,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[7]  H. S. Price,et al.  Flow in Heterogeneous Porous Media , 1961 .

[8]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[9]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[10]  C. Schwab,et al.  Generalized FEM for Homogenization Problems , 2002 .

[11]  Ben Schweizer,et al.  An Adaptive Multiscale Finite Element Method , 2014, Multiscale Model. Simul..

[12]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[13]  D. N. Herting,et al.  Finite elements: Computational aspects: Vol. III, by G.F. Carey and J. Tinsley Oden, Prentice-Hall, Englewood Cliffs, NJ, 1984 , 1985 .

[14]  Alexandre Ern,et al.  A Posteriori Control of Modeling Errors and Discretization Errors , 2003, Multiscale Model. Simul..

[15]  Assyr Abdulle,et al.  A posteriori error estimates in quantities of interest for the finite element heterogeneous multiscale method , 2013 .

[16]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[17]  T. Hou,et al.  Multiscale Finite Element Methods for Nonlinear Problems and Their Applications , 2004 .

[18]  W. T. Cardwell,et al.  Average Permeabilities of Heterogeneous Oil Sands , 1945 .

[19]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[20]  Roland Becker,et al.  Multigrid techniques for finite elements on locally refined meshes , 2000 .

[21]  Assyr Abdulle,et al.  Analysis of the finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems , 2013, Math. Comput..

[22]  C. Schwab,et al.  Two-scale FEM for homogenization problems , 2002 .

[23]  D. Li,et al.  A New Efficient Averaging Technique for Scaleup of Multimillion-Cell Geologic Models , 2001 .

[24]  Assyr Abdulle,et al.  A priori and a posteriori error analysis for numerical homogenization: a unified framework , 2011 .

[25]  J. Tinsley Oden,et al.  MultiScale Modeling of Physical Phenomena: Adaptive Control of Models , 2006, SIAM J. Sci. Comput..

[26]  E Weinan,et al.  The heterogeneous multiscale method* , 2012, Acta Numerica.

[27]  Roland Becker,et al.  Multigrid techniques for finite elements on locally refined meshes , 2000, Numer. Linear Algebra Appl..

[28]  Christoph Schwab,et al.  Two-scale FEM for homogenization problems , 2002 .

[29]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[30]  E Weinan,et al.  The Heterognous Multiscale Methods , 2003 .

[31]  Todd Arbogast,et al.  Subgrid Upscaling and Mixed Multiscale Finite Elements , 2006, SIAM J. Numer. Anal..

[32]  G. Burton Sobolev Spaces , 2013 .

[33]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[34]  J. Oden,et al.  Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials: Part II: a computational environment for adaptive modeling of heterogeneous elastic solids , 2001 .

[35]  Luca Heltai,et al.  The deal.II Library, Version 8.1 , 2013, ArXiv.

[36]  P. Donato,et al.  An introduction to homogenization , 2000 .

[37]  A. Romkes,et al.  Local Goal-Oriented Estimation of Modeling Error for Multi-Scale Modeling of Heterogeneous Elastic Materials , 2007 .

[38]  Harold A. Buetow,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[39]  Rolf Rannacher,et al.  A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .

[40]  Gary R. Consolazio,et al.  Finite Elements , 2007, Handbook of Dynamic System Modeling.

[41]  Zhiming Chen,et al.  A mixed multiscale finite element method for elliptic problems with oscillating coefficients , 2003, Math. Comput..

[42]  F. Brezzi Interacting with the subgrid world , 2005 .

[43]  Thomas Richter,et al.  Variational localizations of the dual weighted residual estimator , 2015, J. Comput. Appl. Math..

[44]  V. G. Kouznetsova,et al.  Multi-scale computational homogenization: Trends and challenges , 2010, J. Comput. Appl. Math..

[45]  T. Richter,et al.  SOLUTIONS OF 3D NAVIER-STOKES BENCHMARK PROBLEMS WITH ADAPTIVE FINITE ELEMENTS , 2006 .

[46]  D. Li,et al.  A New Efficient Averaging Technique for Scaleup of Multimillion-Cell Geologic Models , 1999 .

[47]  J. Tinsley Oden,et al.  Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials: I. Error estimates and adaptive algorithms , 2000 .

[48]  G. Allaire Homogenization and two-scale convergence , 1992 .

[49]  Thomas Y. Hou,et al.  Multiscale Modeling and Computation of Incompressible Flow , 2002 .

[50]  R. RannacherInstitut,et al.  Weighted a Posteriori Error Control in Fe Methods , 1995 .

[51]  Mario Ohlberger,et al.  A Posteriori Error Estimates for the Heterogeneous Multiscale Finite Element Method for Elliptic Homogenization Problems , 2005, Multiscale Model. Simul..

[52]  J. Tinsley Oden,et al.  Adaptive Modeling of Composite Structures: Modeling Error Estimation , 1999 .

[53]  Assyr Abdulle,et al.  On A Priori Error Analysis of Fully Discrete Heterogeneous Multiscale FEM , 2005, Multiscale Model. Simul..