Duality-based adaptivity in finite element discretization of heterogeneous multiscale problems
暂无分享,去创建一个
[1] E. Weinan,et al. Analysis of the heterogeneous multiscale method for elliptic homogenization problems , 2004 .
[2] Rolf Rannacher,et al. An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.
[3] R. Hill. On constitutive macro-variables for heterogeneous solids at finite strain , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[4] L. R. Scott,et al. Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .
[5] Patrick Henning,et al. A Note on Homogenization of Advection-Diffusion Problems with Large Expected Drift , 2011 .
[6] Endre Süli,et al. Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.
[7] H. S. Price,et al. Flow in Heterogeneous Porous Media , 1961 .
[8] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[9] A. Bensoussan,et al. Asymptotic analysis for periodic structures , 1979 .
[10] C. Schwab,et al. Generalized FEM for Homogenization Problems , 2002 .
[11] Ben Schweizer,et al. An Adaptive Multiscale Finite Element Method , 2014, Multiscale Model. Simul..
[12] Thomas Y. Hou,et al. A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .
[13] D. N. Herting,et al. Finite elements: Computational aspects: Vol. III, by G.F. Carey and J. Tinsley Oden, Prentice-Hall, Englewood Cliffs, NJ, 1984 , 1985 .
[14] Alexandre Ern,et al. A Posteriori Control of Modeling Errors and Discretization Errors , 2003, Multiscale Model. Simul..
[15] Assyr Abdulle,et al. A posteriori error estimates in quantities of interest for the finite element heterogeneous multiscale method , 2013 .
[16] T. Hughes,et al. The variational multiscale method—a paradigm for computational mechanics , 1998 .
[17] T. Hou,et al. Multiscale Finite Element Methods for Nonlinear Problems and Their Applications , 2004 .
[18] W. T. Cardwell,et al. Average Permeabilities of Heterogeneous Oil Sands , 1945 .
[19] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[20] Roland Becker,et al. Multigrid techniques for finite elements on locally refined meshes , 2000 .
[21] Assyr Abdulle,et al. Analysis of the finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems , 2013, Math. Comput..
[22] C. Schwab,et al. Two-scale FEM for homogenization problems , 2002 .
[23] D. Li,et al. A New Efficient Averaging Technique for Scaleup of Multimillion-Cell Geologic Models , 2001 .
[24] Assyr Abdulle,et al. A priori and a posteriori error analysis for numerical homogenization: a unified framework , 2011 .
[25] J. Tinsley Oden,et al. MultiScale Modeling of Physical Phenomena: Adaptive Control of Models , 2006, SIAM J. Sci. Comput..
[26] E Weinan,et al. The heterogeneous multiscale method* , 2012, Acta Numerica.
[27] Roland Becker,et al. Multigrid techniques for finite elements on locally refined meshes , 2000, Numer. Linear Algebra Appl..
[28] Christoph Schwab,et al. Two-scale FEM for homogenization problems , 2002 .
[29] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[30] E Weinan,et al. The Heterognous Multiscale Methods , 2003 .
[31] Todd Arbogast,et al. Subgrid Upscaling and Mixed Multiscale Finite Elements , 2006, SIAM J. Numer. Anal..
[32] G. Burton. Sobolev Spaces , 2013 .
[33] P. Clément. Approximation by finite element functions using local regularization , 1975 .
[34] J. Oden,et al. Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials: Part II: a computational environment for adaptive modeling of heterogeneous elastic solids , 2001 .
[35] Luca Heltai,et al. The deal.II Library, Version 8.1 , 2013, ArXiv.
[36] P. Donato,et al. An introduction to homogenization , 2000 .
[37] A. Romkes,et al. Local Goal-Oriented Estimation of Modeling Error for Multi-Scale Modeling of Heterogeneous Elastic Materials , 2007 .
[38] Harold A. Buetow,et al. Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.
[39] Rolf Rannacher,et al. A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .
[40] Gary R. Consolazio,et al. Finite Elements , 2007, Handbook of Dynamic System Modeling.
[41] Zhiming Chen,et al. A mixed multiscale finite element method for elliptic problems with oscillating coefficients , 2003, Math. Comput..
[42] F. Brezzi. Interacting with the subgrid world , 2005 .
[43] Thomas Richter,et al. Variational localizations of the dual weighted residual estimator , 2015, J. Comput. Appl. Math..
[44] V. G. Kouznetsova,et al. Multi-scale computational homogenization: Trends and challenges , 2010, J. Comput. Appl. Math..
[45] T. Richter,et al. SOLUTIONS OF 3D NAVIER-STOKES BENCHMARK PROBLEMS WITH ADAPTIVE FINITE ELEMENTS , 2006 .
[46] D. Li,et al. A New Efficient Averaging Technique for Scaleup of Multimillion-Cell Geologic Models , 1999 .
[47] J. Tinsley Oden,et al. Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials: I. Error estimates and adaptive algorithms , 2000 .
[48] G. Allaire. Homogenization and two-scale convergence , 1992 .
[49] Thomas Y. Hou,et al. Multiscale Modeling and Computation of Incompressible Flow , 2002 .
[50] R. RannacherInstitut,et al. Weighted a Posteriori Error Control in Fe Methods , 1995 .
[51] Mario Ohlberger,et al. A Posteriori Error Estimates for the Heterogeneous Multiscale Finite Element Method for Elliptic Homogenization Problems , 2005, Multiscale Model. Simul..
[52] J. Tinsley Oden,et al. Adaptive Modeling of Composite Structures: Modeling Error Estimation , 1999 .
[53] Assyr Abdulle,et al. On A Priori Error Analysis of Fully Discrete Heterogeneous Multiscale FEM , 2005, Multiscale Model. Simul..