Machine Vision Based Measurement of Dynamic Contact Angles in Microchannel Flows

When characterizing flows in miniaturized channels, the determination of the dynamic contact angle is important. By measuring the dynamic contact angle, the flow properties of the flowing liquid and the effect of material properties on the flow can be characterized. A machine vision based system to measure the contact angle of front or rear menisci of a moving liquid plug is described in this article. In this research, transparent flow channels fabricated on thermoplastic polymer and sealed with an adhesive tape are used. The transparency of the channels enables image based monitoring and measurement of flow variables, including the dynamic contact angle. It is shown that the dynamic angle can be measured from a liquid flow in a channel using the image based measurement system. An image processing algorithm has been developed in a MATLAB® environment. Images are taken using a CCD camera and the channels are illuminated using a custom made ring light. Two fitting methods, a circle and two parabolas, are experimented and the results are compared in the measurement of the dynamic contact angles.

[1]  J. Kang,et al.  How the capillary burst microvalve works. , 2007, Journal of colloid and interface science.

[2]  K. Izumi,et al.  Evaluation of time variation of hydrophobicity of silicone rubber using dynamic contact angle measurement , 2000, Proceedings of the 6th International Conference on Properties and Applications of Dielectric Materials (Cat. No.00CH36347).

[3]  Kalle Marjanen,et al.  Machine Vision Based Measurement of Dynamic Contact Angle in Microchannel Flows , 2008 .

[4]  Junfeng Zhang,et al.  Lattice Boltzmann Simulations of Bubble Dynamics in Microchannels , 2004 .

[5]  N. Nguyen,et al.  Fundamentals and Applications of Microfluidics , 2002 .

[6]  Reza Mohammadi,et al.  Determination of contact angle of microspheres by microscopy methods , 2003, Proceedings International Conference on MEMS, NANO and Smart Systems.

[7]  J. Eijkel,et al.  Multiphase flow in micro- and nanochannels , 2007 .

[8]  Dominik Sankowski,et al.  Computerized device with CCD camera for measurement of surface tension and wetting angle in solid-liquid systems , 1999, IMTC/99. Proceedings of the 16th IEEE Instrumentation and Measurement Technology Conference (Cat. No.99CH36309).

[9]  Lei Li,et al.  A Contact Angle Measurement Method for the Droplets in EWOD-based Chips , 2007, 2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems.