Scaling, reordering, and diagonal pivoting in ILU preconditionings

In this paper we consider several techniques for construction of general-purpose ILU preconditionings. We also provide some new theoretical results supporting the proposed preconditioning strategy. For the preprocession stage we consider row/column norm-equalizing two-side scaling, as well as diagonal dominance improvement by unsymmetric permutations. Within the incomplete LU-factorization, we use a variant of the inverse norm-reducing Complete Diagonal Pivoting. Numerical results are given for 67 test problems chosen from publicly available matrix sets.

[1]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[2]  Richard Sinkhorn Diagonal equivalence to matrices with prescribed row and column sums. II , 1967 .

[3]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[4]  Ilse C. F. Ipsen,et al.  GMRES and the minimal polynomial , 1996 .

[5]  A. Jennings Influence of the Eigenvalue Spectrum on the Convergence Rate of the Conjugate Gradient Method , 1977 .

[6]  Yousef Saad,et al.  Multilevel Preconditioners Constructed From Inverse-Based ILUs , 2005, SIAM J. Sci. Comput..

[7]  Jan Mayer Symmetric Permutations for I-matrices to Delay and Avoid Small Pivots During Factorization , 2008, SIAM J. Sci. Comput..

[8]  Igor E. Kaporin,et al.  High quality preconditioning of a general symmetric positive definite matrix based on its U , 1998 .

[9]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[10]  Gene H. Golub,et al.  Scaling by Binormalization , 2004, Numerical Algorithms.

[11]  A. Sluis Condition, equilibration and pivoting in linear algebraic systems , 1970 .

[12]  O. Axelsson,et al.  On the rate of convergence of the preconditioned conjugate gradient method , 1986 .

[13]  Matthias Bollhöfer,et al.  A robust ILU with pivoting based on monitoring the growth of the inverse factors , 2001 .

[14]  Igor E. Kaporin,et al.  Superlinear convergence in minimum residual iterations , 2005, Numer. Linear Algebra Appl..

[15]  Jeffrey J. Derby,et al.  On Equilibration and Sparse Factorization of Matrices Arising in Finite Element Solutions of Partial Differential Equations , 2000 .

[16]  Igor E. Kaporin,et al.  Explicitly preconditioned conjugate gradient method for the solution of unsymmetric linear systems , 1992 .

[17]  H. V. D. Vorst,et al.  The superlinear convergence behaviour of GMRES , 1993 .

[18]  R. Winther Some Superlinear Convergence Results for the Conjugate Gradient Method , 1980 .

[19]  David S. Kershaw On the problem of unstable pivots in the incomplete LU-conjugate gradient method , 1980 .

[20]  O. Axelsson Iterative solution methods , 1995 .

[21]  Stavros A. Zenios,et al.  A Comparative Study of Algorithms for Matrix Balancing , 1990, Oper. Res..

[22]  Yvan Notay,et al.  On the convergence rate of the conjugate gradients in presence of rounding errors , 1993 .

[23]  Edmond Chow,et al.  Crout Versions of ILU for General Sparse Matrices , 2003, SIAM J. Sci. Comput..

[24]  Michele Benzi,et al.  Preconditioning Highly Indefinite and Nonsymmetric Matrices , 2000, SIAM J. Sci. Comput..

[25]  Valeria Simoncini,et al.  On the Occurrence of Superlinear Convergence of Exact and Inexact Krylov Subspace Methods , 2005, SIAM Rev..

[26]  I. Moret A Note on the Superlinear Convergence of GMRES , 1997 .