Inference in High-Dimensional Graphical Models
暂无分享,去创建一个
[1] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[2] J. Pearl. Causality: Models, Reasoning and Inference , 2000 .
[3] I. Johnstone. On the distribution of the largest eigenvalue in principal components analysis , 2001 .
[4] David Maxwell Chickering,et al. Optimal Structure Identification With Greedy Search , 2002, J. Mach. Learn. Res..
[5] R. Tibshirani,et al. Least angle regression , 2004, math/0406456.
[6] N. Meinshausen,et al. High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.
[7] M. Yuan,et al. Model selection and estimation in the Gaussian graphical model , 2007 .
[8] Terence Tao,et al. The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.
[9] R. Tibshirani,et al. Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.
[10] Noureddine El Karoui,et al. Operator norm consistent estimation of large-dimensional sparse covariance matrices , 2008, 0901.3220.
[11] P. Bickel,et al. Regularized estimation of large covariance matrices , 2008, 0803.1909.
[12] Bin Yu,et al. High-dimensional covariance estimation by minimizing ℓ1-penalized log-determinant divergence , 2008, 0811.3628.
[13] Alexandre d'Aspremont,et al. First-Order Methods for Sparse Covariance Selection , 2006, SIAM J. Matrix Anal. Appl..
[14] Adam J. Rothman,et al. Sparse permutation invariant covariance estimation , 2008, 0801.4837.
[15] S. Geer,et al. On the conditions used to prove oracle results for the Lasso , 2009, 0910.0722.
[16] I. Johnstone,et al. On Consistency and Sparsity for Principal Components Analysis in High Dimensions , 2009, Journal of the American Statistical Association.
[17] P. Bickel,et al. Covariance regularization by thresholding , 2009, 0901.3079.
[18] A. Belloni,et al. Square-Root Lasso: Pivotal Recovery of Sparse Signals via Conic Programming , 2010, 1009.5689.
[19] J. Lafferty,et al. High-dimensional Ising model selection using ℓ1-regularized logistic regression , 2010, 1010.0311.
[20] Ming Yuan,et al. High Dimensional Inverse Covariance Matrix Estimation via Linear Programming , 2010, J. Mach. Learn. Res..
[21] Cun-Hui Zhang,et al. Confidence intervals for low dimensional parameters in high dimensional linear models , 2011, 1110.2563.
[22] Sara van de Geer,et al. Statistics for High-Dimensional Data , 2011 .
[23] Peter Bühlmann,et al. Characterization and Greedy Learning of Interventional Markov Equivalence Classes of Directed Acyclic Graphs (Abstract) , 2011, UAI.
[24] T. Cai,et al. A Constrained ℓ1 Minimization Approach to Sparse Precision Matrix Estimation , 2011, 1102.2233.
[25] A. Belloni,et al. Square-Root Lasso: Pivotal Recovery of Sparse Signals via Conic Programming , 2011 .
[26] Trevor J. Hastie,et al. The Graphical Lasso: New Insights and Alternatives , 2011, Electronic journal of statistics.
[27] S. Geer,et al. $\ell_0$-penalized maximum likelihood for sparse directed acyclic graphs , 2012, 1205.5473.
[28] Cun-Hui Zhang,et al. Sparse matrix inversion with scaled Lasso , 2012, J. Mach. Learn. Res..
[29] Weidong Liu. Gaussian graphical model estimation with false discovery rate control , 2013, 1306.0976.
[30] J. Peters,et al. Identifiability of Gaussian structural equation models with equal error variances , 2012, 1205.2536.
[31] Alessandro Rinaldo,et al. Berry-Esseen bounds for estimating undirected graphs , 2014 .
[32] S. Geer,et al. On asymptotically optimal confidence regions and tests for high-dimensional models , 2013, 1303.0518.
[33] Adel Javanmard,et al. Confidence intervals and hypothesis testing for high-dimensional regression , 2013, J. Mach. Learn. Res..
[34] Harrison H. Zhou,et al. Asymptotic normality and optimalities in estimation of large Gaussian graphical models , 2013, 1309.6024.
[35] Marloes H. Maathuis,et al. Structure Learning in Graphical Modeling , 2016, 1606.02359.
[36] Ming Yu,et al. Statistical Inference for Pairwise Graphical Models Using Score Matching , 2016, NIPS.
[37] Sara A. van de Geer,et al. Worst possible sub-directions in high-dimensional models , 2014, J. Multivar. Anal..
[38] S. Geer,et al. Semiparametric efficiency bounds for high-dimensional models , 2016, The Annals of Statistics.