Posterior Constraint Selection for Nonnegative Linear Programming

Posterior constraint optimal selection techniques (COSTs) are developed for nonnegative linear programming problems (NNLPs), and a geometric interpretation is provided. The posterior approach is used in both a dynamic and non-dynamic active-set framework. The computational performance of these methods is compared with the CPLEX standard linear programming algorithms, with two most-violated constraint approaches, and with previously developed COST algorithms for large-scale problems.

[1]  Jay M. Rosenberger,et al.  A Dynamic Active-Set Method for Linear Programming , 2015 .

[2]  Jay M. Rosenberger,et al.  Constraint Optimal Selection Techniques (COSTs) for nonnegative linear programming problems , 2015, Appl. Math. Comput..

[3]  Jay M. Rosenberger,et al.  Constraint Optimal Selection Techniques (COSTs) for Linear Programming , 2013 .

[4]  Jay M. Rosenberger,et al.  The cosine simplex algorithm , 2006 .

[5]  Marcos Pereira Estellita Lins,et al.  An improved intial basis for the simplex algorithm , 2005 .

[6]  Han-Lin Li,et al.  A linear programming approach for identifying a consensus sequence on DNA sequences , 2005, Bioinform..

[7]  George L. Nemhauser,et al.  Rerouting Aircraft for Airline Recovery , 2003, Transp. Sci..

[8]  Peter Dare,et al.  GPS network design: logistics solution using optimal and near-optimal methods , 2000 .

[9]  John E. Mitchell,et al.  Computational Experience with an Interior Point Cutting Plane Algorithm , 1999, SIAM J. Optim..

[10]  Martin W. P. Savelsbergh,et al.  Branch-and-Price: Column Generation for Solving Huge Integer Programs , 1998, Oper. Res..

[11]  Norman D. Curet,et al.  A primal-dual simplex method for linear programs , 1993, Oper. Res. Lett..

[12]  Robert E. Bixby,et al.  Very Large-Scale Linear Programming: A Case Study in Combining Interior Point and Simplex Methods , 1992, Oper. Res..

[13]  Pingqi Pan,et al.  Practical finite pivoting rules for the simplex method , 1990 .

[14]  D. Myers,et al.  A constraint selection technique for a class of linear programs , 1988 .

[15]  Richard M. Karp,et al.  A Family of Simplex Variants Solving an m × d Linear Program in Expected Number of Pivot Steps Depending on d Only , 1986, Math. Oper. Res..

[16]  Stanley Zionts,et al.  Techniques for Removing Nonbinding Constraints and Extraneous Variables from Linear Programming Problems , 1966 .

[17]  J. J. Stone,et al.  THE CROSS-SECTION METHOD, AN ALGORITHM FOR LINEAR PROGRAMMING , 1958 .

[18]  Marcos Pereira Estellita Lins,et al.  An improved initial basis for the Simplex algorithm , 2005, Comput. Oper. Res..

[19]  MILAN ZELENY,et al.  An external reconstruction approach (ERA) to linear programming , 1986, Comput. Oper. Res..