A two phase approach for the bi-objective non-convex combined heat and power production planning problem

In this paper, we deal with the bi-objective non-convex combined heat and power (CHP) planning problem. A medium and long term planning problem decomposes into thousands of single period (hourly) subproblems and dynamic constraints can usually be ignored in this context. The hourly subproblem can be formulated as a mixed integer linear programming (MILP) model. First, an efficient two phase approach for constructing the Pareto Frontier (PF) of the hourly subproblem is presented. Then a merging algorithm is developed to approximate the PF for the multi-period planning problem. Numerical results with real CHP plants demonstrate the effectiveness and efficiency of the solution approach using the Cplex based ɛ-constraint method as benchmark.

[1]  George Mavrotas,et al.  A branch and bound algorithm for mixed zero-one multiple objective linear programming , 1998, Eur. J. Oper. Res..

[2]  George Mavrotas,et al.  Multi-criteria branch and bound: A vector maximization algorithm for Mixed 0-1 Multiple Objective Linear Programming , 2005, Appl. Math. Comput..

[3]  Risto Lahdelma,et al.  Poly-Generation Planning: Useful Lessons from Models and Decision Support Tools , 2009 .

[4]  João C. N. Clímaco,et al.  A review of interactive methods for multiobjective integer and mixed-integer programming , 2007, Eur. J. Oper. Res..

[5]  José Rui Figueira,et al.  An efficient algorithm for bi-objective combined heat and power production planning under the emission trading scheme , 2014 .

[6]  R. Weiner Lecture Notes in Economics and Mathematical Systems , 1985 .

[7]  Luís Paquete,et al.  Algorithmic improvements on dynamic programming for the bi-objective {0,1} knapsack problem , 2013, Comput. Optim. Appl..

[8]  Lingfeng Wang,et al.  Stochastic combined heat and power dispatch based on multi-objective particle swarm optimization , 2006, 2006 IEEE Power Engineering Society General Meeting.

[9]  P. Linares,et al.  Multiple criteria decision making and risk analysis as risk management tools for power systems planning , 2002 .

[10]  Risto Lahdelma,et al.  An efficient linear programming algorithm for combined heat and power production , 2003, Eur. J. Oper. Res..

[11]  Risto Lahdelma,et al.  An efficient linear model and optimisation algorithm for multi-site combined heat and power production , 2006, Eur. J. Oper. Res..

[12]  Merja Halme,et al.  Cone contraction and reference point methods for multi-criteria mixed integer optimization , 2013, Eur. J. Oper. Res..

[13]  Ming-Tong Tsay,et al.  Applying the multi-objective approach for operation strategy of cogeneration systems under environmental constraints , 2003 .

[14]  E. Løken Use of multicriteria decision analysis methods for energy planning problems , 2007 .

[15]  Luis M. Abadie,et al.  European CO2 prices and carbon capture investments , 2008 .

[16]  Anthony Przybylski,et al.  Two phase algorithms for the bi-objective assignment problem , 2008, Eur. J. Oper. Res..

[17]  Arturo Hernández Aguirre,et al.  A Set of Test Cases for Performance Measures in Multiobjective Optimization , 2008, MICAI.

[18]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .

[19]  Y. Aneja,et al.  BICRITERIA TRANSPORTATION PROBLEM , 1979 .

[20]  Risto Lahdelma,et al.  Analysis of power pools in the deregulated energy market through simulation , 2001, Decis. Support Syst..

[21]  Anthony Przybylski,et al.  A two phase method for multi-objective integer programming and its application to the assignment problem with three objectives , 2010, Discret. Optim..

[22]  Hanif D. Sherali,et al.  On mixed-integer zero-one representations for separable lower-semicontinuous piecewise-linear functions , 2001, Oper. Res. Lett..

[23]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .

[24]  Teresa Wu,et al.  Decentralized operation strategies for an integrated building energy system using a memetic algorithm , 2012, Eur. J. Oper. Res..

[25]  M. Ramachandran,et al.  Application of multi-criteria decision making to sustainable energy planning--A review , 2004 .

[26]  François Maréchal,et al.  Multi-Objective, Multi-Period Optimization of Biomass Conversion Technologies Using Evolutionary Algorithms and Mixed Integer Linear Programming (MILP) , 2013 .

[27]  Douglas T. Gardner,et al.  Joint planning of combined heat and power and electric power systems : An efficient model formulation , 1997 .

[28]  Makkonen Simo,et al.  Stochastic Simulation in Risk Analysis of Energy Trade , 1998 .

[29]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .

[30]  Tomasz Radzik,et al.  Computing all efficient solutions of the biobjective minimum spanning tree problem , 2008, Comput. Oper. Res..

[31]  Roberto Aringhieri,et al.  Optimal Operations Management and Network Planning of a District Heating System with a Combined Heat and Power Plant , 2003, Ann. Oper. Res..

[32]  T. Lantharthong,et al.  Generation Expansion Planning Strategies on Power System: A Review , 2012 .

[33]  Alejandro Crema,et al.  A method for finding well-dispersed subsets of non-dominated vectors for multiple objective mixed integer linear programs , 2007, Eur. J. Oper. Res..

[34]  Simo Makkonen,et al.  Decision modelling tools for utilities in the deregulated energy market , 2005 .

[35]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[36]  Anthony Przybylski,et al.  Multiple objective branch and bound for mixed 0-1 linear programming: Corrections and improvements for the biobjective case , 2013, Comput. Oper. Res..

[37]  Navid Sahebjamnia,et al.  Integrated business continuity and disaster recovery planning: Towards organizational resilience , 2015, Eur. J. Oper. Res..

[38]  Fabricio I. Salgado,et al.  Short-term operation planning on cogeneration systems : A survey , 2008 .

[39]  Yaochu Jin,et al.  A Critical Survey of Performance Indices for Multi-Objective Optimisation , 2003 .

[40]  A. Gomes Martins,et al.  A multiple objective mixed integer linear programming model for power generation expansion planning , 2004 .

[41]  Ruhul A. Sarker,et al.  Assessment Methodologies for Multiobjective Evolutionary Algorithms , 2003 .

[42]  Risto Lahdelma,et al.  Efficient algorithms for combined heat and power production planning under the deregulated electricity market , 2007, Eur. J. Oper. Res..

[43]  Risto Lahdelma,et al.  Non-convex power plant modelling in energy optimisation , 2006, Eur. J. Oper. Res..

[44]  George Mavrotas,et al.  Effective implementation of the epsilon-constraint method in Multi-Objective Mathematical Programming problems , 2009, Appl. Math. Comput..

[45]  Zaijun Wu,et al.  Modeling, planning and optimal energy management of combined cooling, heating and power microgrid: A review , 2014 .

[46]  Jacques Teghem,et al.  Two-phases Method and Branch and Bound Procedures to Solve the Bi–objective Knapsack Problem , 1998, J. Glob. Optim..

[47]  José Rui Figueira,et al.  Some convergence-based M-ary cardinal metrics for comparing performances of multi-objective optimizers , 2012, Comput. Oper. Res..

[48]  Risto Lahdelma,et al.  Analysis of power pools in the deregulated energy market through simulation , 1999, Proceedings of the 32nd Annual Hawaii International Conference on Systems Sciences. 1999. HICSS-32. Abstracts and CD-ROM of Full Papers.

[49]  Taher Niknam,et al.  A new multi-objective reserve constrained combined heat and power dynamic economic emission dispatch , 2012 .

[50]  Tao Guo,et al.  An algorithm for combined heat and power economic dispatch , 1996 .

[51]  Malabika Basu,et al.  Combined heat and power economic emission dispatch using nondominated sorting genetic algorithm-II , 2013 .

[52]  Pandu R. Tadikamalla,et al.  Bicriteria hierarchical optimization of two-machine flow shop scheduling problem with time-dependent deteriorating jobs , 2014, Eur. J. Oper. Res..

[53]  C. S. Chang,et al.  Stochastic multiobjective generation dispatch of combined heat and power systems , 1998 .

[54]  Risto Lahdelma,et al.  An efficient envelope-based Branch and Bound algorithm for non-convex combined heat and power production planning , 2007, Eur. J. Oper. Res..

[55]  Jamshid Aghaei,et al.  Mixed integer programming of multiobjective hydro-thermal self scheduling , 2012, Appl. Soft Comput..

[56]  Risto Lahdelma,et al.  CO2 emissions trading planning in combined heat and power production via multi-period stochastic optimization , 2007, Eur. J. Oper. Res..

[57]  Wei Wu,et al.  Multi-objective optimization for combined heat and power economic dispatch with power transmission loss and emission reduction , 2013 .

[58]  Murat Köksalan,et al.  An Exact Algorithm for Finding Extreme Supported Nondominated Points of Multiobjective Mixed Integer Programs , 2010, Manag. Sci..

[59]  Lothar Thiele,et al.  Quality Assessment of Pareto Set Approximations , 2008, Multiobjective Optimization.

[60]  Antonio J. Conejo,et al.  Decomposition Techniques in Mathematical Programming: Engineering and Science Applications , 2006 .

[61]  Saïd Hanafi,et al.  New convergent heuristics for 0-1 mixed integer programming , 2009, Eur. J. Oper. Res..