Copying out our ABCs: the role of gene redundancy in interpreting genetic hierarchies.

[1]  J L Bowman,et al.  Genes directing flower development in Arabidopsis. , 1989, The Plant cell.

[2]  I. Sussex,et al.  Function of the apetala-1 gene during Arabidopsis floral development. , 1990, The Plant cell.

[3]  E. Coen,et al.  The war of the whorls: genetic interactions controlling flower development , 1991, Nature.

[4]  D. Weigel,et al.  LEAFY controls floral meristem identity in Arabidopsis , 1992, Cell.

[5]  Cindy Gustafson-Brown,et al.  Molecular characterization of the Arabidopsis floral homeotic gene APETALA1 , 1992, Nature.

[6]  I. Sussex,et al.  LEAFY Interacts with Floral Homeotic Genes to Regulate Arabidopsis Floral Development. , 1992, The Plant cell.

[7]  L. Avery,et al.  Ordering gene function: the interpretation of epistasis in regulatory hierarchies. , 1992, Trends in genetics : TIG.

[8]  Elliot M. Meyerowitz,et al.  Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes , 1993 .

[9]  J. Chory,et al.  Out of darkness: mutants reveal pathways controlling light-regulated development in plants. , 1993, Trends in genetics : TIG.

[10]  Z. Siegfried,et al.  Spl elements protect a CpG island from de novo methylation , 1994, Nature.

[11]  A. Bird,et al.  Sp1 sites in the mouse aprt gene promoter are required to prevent methylation of the CpG island. , 1994, Genes & development.

[12]  The Arabidopsis AGL8 MADS box gene is expressed in inflorescence meristems and is negatively regulated by APETALA1. , 1995, The Plant cell.

[13]  M. Yanofsky,et al.  Molecular basis of the cauliflower phenotype in Arabidopsis , 1995, Science.

[14]  F. B. Pickett,et al.  Seeing double: appreciating genetic redundancy. , 1995, The Plant cell.

[15]  D. Weigel The APETALA2 domain is related to a novel type of DNA binding domain. , 1995, The Plant cell.

[16]  P. Perez,et al.  AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. , 1996, The Plant cell.

[17]  The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. , 1996, The Plant cell.

[18]  D. Weigel,et al.  Floral determination and expression of floral regulatory genes in Arabidopsis. , 1997, Development.

[19]  T. Mukai,et al.  Aberrant Methylation of an Imprinted Gene U2af1-rs1(SP2) Caused by Its Own Transgene* , 1997, The Journal of Biological Chemistry.

[20]  R. Paro,et al.  An imprinting element from the mouse H19 locus functions as a silencer in Drosophila , 1997, Nature Genetics.

[21]  S. Saitoh,et al.  Imprinting in Prader-Willi and Angelman syndromes. , 1998, Trends in genetics : TIG.

[22]  R. Phillips Functional genomics : Probing plant gene function and expression with transposons , 1998 .

[23]  J. Silke,et al.  An embryonic demethylation mechanism involving binding of transcription factors to replicating DNA , 1998, The EMBO journal.

[24]  S. Tilghman,et al.  Chromatin conformation of the H19 epigenetic mark. , 1998, Human molecular genetics.

[25]  R. Paro,et al.  Identification of a silencing element in the human 15q11-q13 imprinting center by using transgenic Drosophila. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[26]  C. Hsieh Evidence that Protein Binding Specifies Sites of DNA Demethylation , 1999, Molecular and Cellular Biology.

[27]  A. Razin,et al.  The imprinting box of the mouse Igf2r gene , 1999, Nature.

[28]  U. Francke,et al.  In vivo nuclease hypersensitivity studies reveal multiple sites of parental origin-dependent differential chromatin conformation in the 150 kb SNRPN transcription unit. , 1999, Human molecular genetics.

[29]  L. Hurst,et al.  Small introns tend to occur in GC-rich regions in some but not all vertebrates. , 1999, Trends in genetics : TIG.

[30]  A. Bird,et al.  DNA methylation and chromatin modification. , 1999, Current opinion in genetics & development.