HgCdTe photodiodes for IR detection: a review

This paper reviews recent advances in photovoltaic (PV) HgCdTe infrared detector technology. Recent advances have enabled a new generation of spaceborne multispectral instruments for remote sensing applications, and have led to the practicality of dual-band (or two-color) IR focal plane array technology. The focus of this paper is on the back-illuminated HgCdTe PV arrays that have made this new generation of spaceborne instruments possible.

[1]  T Ashley,et al.  Non-Equilibrium Devices For Infrared Detection , 1985, Optics & Photonics.

[2]  J. Bajaj,et al.  Infrared detector assemblies for the tropospheric emission spectrometer , 2000, 2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484).

[3]  Moustafa T. Chahine,et al.  Development and test of the Atmospheric Infrared Sounder (AIRS) for the NASA Earth Observing System (EOS) , 1999, Remote Sensing.

[4]  Antoni Rogalski,et al.  Heterostructure infrared photovoltaic detectors , 2000 .

[5]  G. Destefanis,et al.  Status of the MBE technology at leti LIR for the manufacturing of HgCdTe focal plane arrays , 2000 .

[6]  R. E. Bornfreund,et al.  Fabrication of high-performance large-format MWIR focal plane arrays from MBE-grown HgCdTe on 4″ silicon substrates , 2001 .

[7]  Charles Robinson,et al.  Performance of the multispectral photoconductive HgCdTe focal plane/Dewar assembly for the high-resolution dynamics limb sounder (HIRDLS) instrument , 2000, SPIE Optics + Photonics.

[8]  C. D. Maxey,et al.  Summary of HgCdTe 2D array technology in the U.K. , 2001 .

[9]  Marion B. Reine,et al.  Photoconductive HgCdTe detector assemblies for the GOES imager and sounder instruments , 1996, Optics & Photonics.

[10]  R. E. Bornfreund,et al.  270 x 436 HgCdTe FPA module for the Rosetta VIRTIS-H and -M instruments , 2000, SPIE Optics + Photonics.

[11]  Antoni Rogalski Dual-band infrared detectors , 2000, Photonics West - Optoelectronic Materials and Devices.

[12]  G. Destefanis,et al.  Large improvement in HgCdTe photovoltaic detector performances at LETI , 1993 .

[13]  Thomas S. Pagano,et al.  Moderate Resolution Imaging Spectroradiometer (MODIS) , 1993, Defense, Security, and Sensing.

[14]  J. Ray Frederick,et al.  High-performance HgCdTe photoconductive detector assemblies for space applications , 1996, Optics & Photonics.

[15]  Neil T. Gordon,et al.  Towards background-limited, room-temperature, infrared photon detectors in the 3–13 μm wavelength range , 1999 .

[16]  E. H. Putley,et al.  Preparation and properties of HgTe and mixed crystals of HgTe-CdTe , 1959 .

[17]  T. Parodos,et al.  Advances in composition control for 16 µm LPE P-on-n HgCdTe heterojunction photodiodes for remote sensing applications at 60K , 1999 .

[18]  Jeffrey L. Rienstra,et al.  MTI focal plane assembly design and performance , 1999, Optics & Photonics.

[19]  James A. Stobie,et al.  Performance of the PV/PC HgCdTe focal plane/dewar assembly for the Atmospheric Infrared Sounder instrument (AIRS) , 1998, Optics & Photonics.

[20]  James H. Rutter,et al.  Advances in 15-um HgCdTe photovoltaic and photoconductive detector technology for remote sensing , 1996, Optics & Photonics.

[21]  Donald N. B. Hall,et al.  Latest results on HgCdTe 2048x2048 and silicon focal plane arrays , 2000, Defense, Security, and Sensing.

[22]  M. Lanir,et al.  Performance of PV HgCdTe arrays for 1-14-µm applications , 1982, IEEE Transactions on Electron Devices.

[23]  E. A. Patten,et al.  High performance HgCdTe two-color infrared detectors grown by molecular beam epitaxy , 1997 .

[24]  Paul W. Kruse,et al.  Long wavelength photoeffects in mercury selenide, mercury telluride, and mercury telluride-cadmium telluride , 1962 .

[25]  Marcia J. Rieke,et al.  256 x 256 HgCdTe focal plane array for the Hubble Space Telescope , 1990, Other Conferences.

[26]  M. Zandian,et al.  A novel simultaneous unipolar multispectral integrated technology approach for HgCdTe IR detectors and focal plane arrays , 2001 .

[27]  J. Bajaj State-of-the-art HgCdTe infrared devices , 2000, Photonics West - Optoelectronic Materials and Devices.

[28]  A. H. Lockwood,et al.  HgCdTe Hybrid Focal-Plane Arrays , 1980, Photonics West - Lasers and Applications in Science and Engineering.

[29]  Michael A. Kinch,et al.  Fundamental physics of infrared detector materials , 2000, SPIE OPTO.

[30]  Charles Thomas Elliott New infrared and other applications of narrow-gap semiconductors , 1998, Optics & Photonics.

[31]  W. E. Tennant,et al.  HgCdTe– an Unexpectedly Good Choice for (Near) Room Temperature Focal Plane Arrays , 1997 .

[32]  E. A. Patten,et al.  Molecular beam epitaxial growth and performance of HgCdTe-based simultaneous-mode two-color detectors , 1998 .

[33]  W. Tennant,et al.  Role of Hg in junction formation in ion‐implanted HgCdTe , 1987 .

[34]  Pradip Mitra,et al.  Simultaneous MW/LW dual-band MOVPE HgCdTe 64x64 FPAs , 1998, Defense, Security, and Sensing.

[35]  S. Graham,et al.  HgCdTe detector technology and performance for the Composite Infrared Spectrometer (CIRS)/Cassini mission , 1996, Optics & Photonics.