Simple accurate approximations for the optical properties of metallic nanospheres and nanoshells.

This work aims to provide simple and accurate closed-form approximations to predict the scattering and absorption spectra of metallic nanospheres and nanoshells supporting localised surface plasmon resonances. Particular attention is given to the validity and accuracy of these expressions in the range of nanoparticle sizes relevant to plasmonics, typically limited to around 100 nm in diameter. Using recent results on the rigorous radiative correction of electrostatic solutions, we propose a new set of long-wavelength polarizability approximations for both nanospheres and nanoshells. The improvement offered by these expressions is demonstrated with direct comparisons to other approximations previously obtained in the literature, and their absolute accuracy is tested against the exact Mie theory.

[1]  B. Draine,et al.  Discrete-Dipole Approximation For Scattering Calculations , 1994 .

[2]  Feng Wang,et al.  General properties of local plasmons in metal nanostructures. , 2006, Physical review letters.

[3]  Richard S. Stein,et al.  The Scattering of Light and Other Electromagnetic Radiation. Milton Kerker. Academic Press, New York, 1969. xviii + 670 pp., illus. $33.50 , 1970 .

[4]  J. Mosig,et al.  A New Closed-Form Solution to Light Scattering by Spherical Nanoshells , 2009, IEEE Transactions on Nanotechnology.

[5]  Boris N. Khlebtsov,et al.  Multipole Plasmons in Metal Nanorods: Scaling Properties and Dependence on Particle Size, Shape, Orientation, and Dielectric Environment , 2007 .

[6]  Eric C. Le Ru,et al.  Radiative correction in approximate treatments of electromagnetic scattering by point and body scatterers , 2012, 1210.0936.

[7]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[8]  The range of validity of the Rayleigh and Thomson limits for Lorenz-Mie scattering , 1978 .

[9]  P. Etchegoin,et al.  An analytic model for the optical properties of gold. , 2006, The Journal of chemical physics.

[10]  H. Matsubara,et al.  Inhibition of peritoneal dissemination of colon carcinoma in syngeneic mice immunized with interleukin-2-producing cells. , 1996, Cancer letters.

[11]  Andrew A. Lacis,et al.  Scattering, Absorption, and Emission of Light by Small Particles , 2002 .

[12]  Naomi J. Halas,et al.  Plasmon Resonance Shifts of Au-Coated Au 2 S Nanoshells: Insight into Multicomponent Nanoparticle Growth , 1997 .

[13]  Carretera de Valencia,et al.  The finite element method in electromagnetics , 2000 .

[14]  Younan Xia,et al.  Chemical synthesis of novel plasmonic nanoparticles. , 2009, Annual review of physical chemistry.

[15]  Younan Xia,et al.  Shape-Controlled Synthesis and Surface Plasmonic Properties of Metallic Nanostructures , 2005 .

[16]  Eric C Le Ru,et al.  Investigation of particle shape and size effects in SERS using T-matrix calculations. , 2009, Physical chemistry chemical physics : PCCP.

[17]  Y. Massoud,et al.  A closed-form analytical model for single nanoshells , 2006, IEEE Transactions on Nanotechnology.

[18]  Naomi J. Halas,et al.  Relative contributions to the plasmon line shape of metal nanoshells , 2002 .

[19]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[20]  Romain Quidant,et al.  Optical sensing based on plasmon coupling in nanoparticle arrays. , 2004, Optics express.

[21]  Adam D. McFarland,et al.  Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity , 2003 .

[22]  Naomi J. Halas,et al.  Playing with Plasmons: Tuning the Optical Resonant Properties of Metallic Nanoshells , 2005 .

[23]  R. Aroca,et al.  Surface enhanced vibrational spectroscopy , 2006 .

[24]  James P. Gordon,et al.  Radiation Damping in Surface-Enhanced Raman Scattering , 1982 .

[25]  M. Moskovits Surface-enhanced spectroscopy , 1985 .

[26]  Milton Kerker,et al.  The Scattering of Light and Other Electromagnetic Radiation ~Academic , 1969 .

[27]  D. P. O'Neal,et al.  Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. , 2004, Cancer letters.

[28]  Molly M. Miller,et al.  Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment. , 2005, The journal of physical chemistry. B.

[29]  Prashant K. Jain,et al.  Plasmonic photothermal therapy (PPTT) using gold nanoparticles , 2008, Lasers in Medical Science.

[30]  Eric C. Le Ru,et al.  Principles of Surface-Enhanced Raman Spectroscopy: And Related Plasmonic Effects , 2008 .

[31]  Naomi J. Halas,et al.  Linear optical properties of gold nanoshells , 1999 .

[32]  Milton Kerker,et al.  Scattering of Electromagnetic Waves from Two Concentric Spheres , 1951 .

[33]  Emil Prodan,et al.  Electronic Structure and Optical Properties of Gold Nanoshells , 2003 .

[34]  M. Garcia-Parajo,et al.  Optical antennas focus in on biology , 2008 .

[35]  Younan Xia,et al.  Synthesis of silver nanostructures with controlled shapes and properties. , 2007, Accounts of chemical research.

[36]  Ronald G. Pinnick,et al.  Nonunitarity of the light scattering approximations. , 1979, Applied optics.

[37]  F. Claro,et al.  Theory of surface enhanced Raman scattering in colloids , 1993 .

[38]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[39]  L. Novotný,et al.  Antennas for light , 2011 .

[40]  M. Meier,et al.  Enhanced fields on large metal particles: dynamic depolarization. , 1983, Optics letters.

[41]  R. V. Van Duyne,et al.  Localized surface plasmon resonance spectroscopy and sensing. , 2007, Annual review of physical chemistry.

[42]  Naomi J. Halas,et al.  Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment , 2004 .

[43]  Paul Mulvaney,et al.  Drastic reduction of plasmon damping in gold nanorods. , 2002 .

[44]  H. V. Hulst Light Scattering by Small Particles , 1957 .

[45]  Naomi J. Halas,et al.  Controlling the surface enhanced Raman effect via the nanoshell geometry , 2003 .

[46]  W. Wiscombe Improved Mie scattering algorithms. , 1980, Applied optics.

[47]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[48]  G. Schatz,et al.  Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes , 1995 .

[49]  Kenjiro Miyano,et al.  Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation , 2003 .