Interpolation methods for nonlinear wavelet regression with irregularly spaced design
暂无分享,去创建一个
[1] I. Johnstone,et al. Minimax estimation via wavelet shrinkage , 1998 .
[2] Prakash N. Patil,et al. On the Choice of Smoothing Parameter, Threshold and Truncation in Nonparametric Regression by Non-linear Wavelet Methods , 1996 .
[3] I. Johnstone,et al. Density estimation by wavelet thresholding , 1996 .
[4] I. Johnstone,et al. Wavelet Shrinkage: Asymptopia? , 1995 .
[5] Matthew P. Wand,et al. Kernel Smoothing , 1995 .
[6] I. Johnstone,et al. Ideal spatial adaptation by wavelet shrinkage , 1994 .
[7] G. Kerkyacharian,et al. Density estimation by kernel and wavelets methods: Optimality of Besov spaces , 1993 .
[8] T. Hastie,et al. Local Regression: Automatic Kernel Carpentry , 1993 .
[9] W. Härdle. Applied Nonparametric Regression , 1992 .
[10] M. Shensa. The Discrete Wavelet Transform , 1991 .
[11] James Stephen Marron,et al. Choosing a Kernel Regression Estimator , 1991 .
[12] R. M. Clark. Calibration, Cross‐Validation and Carbon‐14. Ii , 1979 .
[13] Theo Gasser,et al. Smoothing Techniques for Curve Estimation , 1979 .
[14] H. Müller,et al. Kernel estimation of regression functions , 1979 .
[15] R. M. Clark. Non‐Parametric Estimation of a Smooth Regression Function , 1977 .
[16] W. Hoeffding. Probability inequalities for sum of bounded random variables , 1963 .