EVOLUTION OF OHMICALLY HEATED HOT JUPITERS

We present calculations of thermal evolution of hot Jupiters with various masses and effective temperatures under ohmic dissipation. The resulting evolutionary sequences show a clear tendency toward inflated radii for effective temperatures that give rise to significant ionization of alkali metals in the atmosphere, compatible with the trend of the data. The degree of inflation shows that ohmic dissipation along with the likely variability in heavy element content can account for all of the currently detected radius anomalies. Furthermore, we find that in the absence of a massive core, low-mass hot Jupiters can overflow their Roche lobes and evaporate on Gyr timescales, possibly leaving behind small rocky cores.

[1]  A. Cumming,et al.  OHMIC DISSIPATION IN THE INTERIORS OF HOT JUPITERS , 2012, 1207.3278.

[2]  H. Thrastarson,et al.  EFFECTS OF INITIAL FLOW ON CLOSE-IN PLANET ATMOSPHERIC CIRCULATION , 2010, 1004.2871.

[3]  Ch. Helling,et al.  EARLY UV INGRESS IN WASP-12b: MEASURING PLANETARY MAGNETIC FIELDS , 2010, 1009.5947.

[4]  L. Polvani,et al.  EQUATORIAL SUPERROTATION ON TIDALLY LOCKED EXOPLANETS , 2011, 1103.3101.

[5]  Peter Bodenheimer,et al.  On the Tidal Inflation of Short-Period Extrasolar Planets , 2001 .

[6]  H. Poincaré,et al.  Les Méthodes nouvelles de la Mécanique céleste and An Introduction to the Study of Stellar Structure , 1958 .

[7]  T. Guillot Interiors of giant planets inside and outside the solar system. , 1999, Science.

[8]  Jpl,et al.  Saturn Forms by Core Accretion in 3.4 Myr , 2008, 0810.0288.

[9]  Jack J. Lissauer,et al.  Accretion of the gaseous envelope of Jupiter around a 5–10 Earth-mass core , 2005 .

[10]  D. Stevenson,et al.  Constraints on Deep-seated Zonal Winds Inside Jupiter and Saturn , 2007, 0711.3922.

[11]  Yuk L. Yung,et al.  High-temperature Photochemistry in the Atmosphere of HD 189733b , 2010 .

[12]  M. Marley,et al.  Line and Mean Opacities for Ultracool Dwarfs and Extrasolar Planets , 2007, 0706.2374.

[13]  J. Peixoto,et al.  Physics of climate , 1992 .

[14]  I. Hubeny,et al.  Possible Solutions to the Radius Anomalies of Transiting Giant Planets , 2006 .

[15]  Adam Burrows,et al.  CAN TiO EXPLAIN THERMAL INVERSIONS IN THE UPPER ATMOSPHERES OF IRRADIATED GIANT PLANETS? , 2009, 0902.3995.

[16]  Jack J. Lissauer,et al.  Formation of the Giant Planets by Concurrent Accretion of Solids and Gas , 1995 .

[17]  J. Fortney,et al.  The Interior Structure, Composition, and Evolution of Giant Planets , 2009, 0912.0533.

[18]  Kevin Heng,et al.  Atmospheric circulation of tidally locked exoplanets: a suite of benchmark tests for dynamical solvers , 2010, 1010.1257.

[19]  Tristan Guillot,et al.  Evolution of "51 Pegasus b-like" planets , 2002 .

[20]  Konstantin Batygin,et al.  DETERMINATION OF THE INTERIOR STRUCTURE OF TRANSITING PLANETS IN MULTIPLE-PLANET SYSTEMS , 2009, 0907.5019.

[21]  L. G. Henyey,et al.  A NEW METHOD OF AUTOMATIC COMPUTATION OF STELLAR EVOLUTION , 1964 .

[22]  T. Schneider,et al.  Mechanisms of Jet Formation on the Giant Planets , 2009, 0910.3682.

[23]  G. Laughlin,et al.  On the Radii of Extrasolar Giant Planets , 2003 .

[24]  Gilles Chabrier,et al.  An Equation of State for Low-Mass Stars and Giant Planets , 1995 .

[25]  S. Seager,et al.  Atmospheric Circulation of Close-In Extrasolar Giant Planets. I. Global, Barotropic, Adiabatic Simulations , 2006, astro-ph/0607338.

[26]  Tristan Guillot,et al.  An analysis of the CoRoT-2 system: A young spotted star and its inflated giant planet , 2010, 1010.1078.

[27]  David Charbonneau,et al.  ATMOSPHERIC CIRCULATION OF HOT JUPITERS: COUPLED RADIATIVE-DYNAMICAL GENERAL CIRCULATION MODEL SIMULATIONS OF HD 189733b and HD 209458b , 2008, 0809.2089.

[28]  U. Christensen,et al.  Energy flux determines magnetic field strength of planets and stars , 2009, Nature.

[29]  T. Gold,et al.  On the Eccentricity of Satellite Orbits in the Solar System , 1963 .

[30]  Andrew N. Youdin,et al.  THE MECHANICAL GREENHOUSE: BURIAL OF HEAT BY TURBULENCE IN HOT JUPITER ATMOSPHERES , 2010, 1008.0645.

[31]  Gregory Laughlin,et al.  ON THE ANOMALOUS RADII OF THE TRANSITING EXTRASOLAR PLANETS , 2011, 1101.5827.

[32]  David R. Alexander,et al.  Low-Temperature Rosseland Opacities , 1975 .

[33]  D. Stevenson Interiors of the Giant Planets , 1982 .

[34]  Konstantin Batygin,et al.  INFLATING HOT JUPITERS WITH OHMIC DISSIPATION , 2010, 1002.3650.

[35]  Gilles Chabrier,et al.  Heat transport in giant (exo)planets: a new perspective , 2007 .

[36]  Astrophysics,et al.  INTERACTION OF CLOSE-IN PLANETS WITH THE MAGNETOSPHERE OF THEIR HOST STARS. I. DIFFUSION, OHMIC DISSIPATION OF TIME-DEPENDENT FIELD, PLANETARY INFLATION, AND MASS LOSS , 2008, 0804.0975.

[37]  Arthur Y. Hou,et al.  Nonlinear axially symmetric circulations in a nearly inviscid atmosphere , 1980 .

[38]  Migration and the Formation of Systems of Hot Super-Earths and Neptunes , 2006, astro-ph/0609779.

[39]  The HARPS search for southern extra-solar planets XXII. Multiple planet systems from the HARPS volume limited sample , 2010 .

[40]  Adam Burrows,et al.  TIDAL HEATING MODELS FOR THE RADII OF THE INFLATED TRANSITING GIANT PLANETS WASP-4b, WASP-6b, WASP-12b, WASP-15b, AND TrES-4 , 2009, 0910.4394.

[41]  P. H. Hauschildt,et al.  Hot-Jupiters and hot-Neptunes: A common origin? , 2005 .

[42]  David Charbonneau,et al.  The 3.6-8.0 μm Broadband Emission Spectrum of HD 209458b: Evidence for an Atmospheric Temperature Inversion , 2007, 0709.3984.

[43]  Simon Albrecht,et al.  The orbital motion, absolute mass and high-altitude winds of exoplanet HD 209458b , 2010, Nature.

[44]  R. Perna,et al.  OHMIC DISSIPATION IN THE ATMOSPHERES OF HOT JUPITERS , 2010, 1009.3273.