Shape-Based Features for Cat Ganglion Retinal Cells Classification

This article presents a quantitative and objective approach to cat ganglion cell characterization and classification. The combination of several biologically relevant features such as diameter, eccentricity, fractal dimension, influence histogram, influence area, convex hull area, and convex hull diameter are derived from geometrical transforms and then processed by three different clustering methods (Ward's hierarchical scheme, K-means and genetic algorithm), whose results are then combined by a voting strategy. These experiments indicate the superiority of some features and also suggest some possible biological implications.

[1]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[2]  Luciano da Fontoura Costa,et al.  Topographical maps of orientation specificity , 1994, Biological Cybernetics.

[3]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[4]  H. Charles Romesburg,et al.  Cluster analysis for researchers , 1984 .

[5]  The Journal of Comparative Neurology , 1899, The American Naturalist.

[6]  David A. Forsyth,et al.  Shape, Contour and Grouping in Computer Vision , 1999, Lecture Notes in Computer Science.

[7]  H. Saito,et al.  Morphology of physiologically identified X‐, Y‐, and W‐type retinal ganglion cells of the cat , 1983, The Journal of comparative neurology.

[8]  L. Costa,et al.  Application and assessment of multiscale bending energy for morphometric characterization of neural cells , 1997 .

[9]  J. Friedman,et al.  Graph-Theoretic Measures of Multivariate Association and Prediction , 1983 .

[10]  J. Bolz,et al.  Relationships between dendritic fields and functional architecture in striate cortex of normal and visually deprived cats , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  J. Stone,et al.  Properties of cat retinal ganglion cells: a comparison of W-cells with X- and Y-cells. , 1974, Journal of neurophysiology.

[12]  Luciano da Fontoura Costa,et al.  Shape Analysis and Classification: Theory and Practice , 2000 .

[13]  Luciano da Fontoura Costa,et al.  Analysis and Synthesis of Morphologically Realistic Neural Networks , 1998 .

[14]  J. Stone,et al.  Correlation between soma size and dendritic morphology in cat retinal ganglion cells: Evidence of further variation in the γ‐cell class , 1980, The Journal of comparative neurology.

[15]  Body and brain. , 1994, Journal of the Royal Society of Medicine.

[16]  L. Peichl,et al.  Postnatal dendritic maturation of alpha and beta ganglion cells in cat retina , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  Luís Augusto Consularo,et al.  The Dynamics of Biological Evolution and the Importance of Spatial Relations and Shapes , 1999 .

[18]  B. Boycott,et al.  Morphology and topography of on- and off-alpha cells in the cat retina , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[19]  Helga Kolb,et al.  Amacrine cells, bipolar cells and ganglion cells of the cat retina: A Golgi study , 1981, Vision Research.

[20]  V. Altuzar,et al.  Atmospheric pollution profiles in Mexico City in two different seasons , 2003 .

[21]  Michael R. Anderberg,et al.  Cluster Analysis for Applications , 1973 .

[22]  Vito Di Gesù,et al.  Integrated fuzzy clustering , 1994 .

[23]  A. Leventhal,et al.  Structural basis of orientation sensitivity of cat retinal ganglion cells , 1983, The Journal of comparative neurology.

[24]  Vito Di Gesù,et al.  Symmetry operators in computer vision , 1996 .

[25]  John M. Gauch,et al.  The Intensity Axis of Symmetry and Its Application to Image Segmentation , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Luciano da Fontoura Costa,et al.  A Biologically-Motivated Approach to Image Representation and Its Application to Neuromorphology , 2000, Biologically Motivated Computer Vision.

[27]  S. WEINTROUB,et al.  A Review of Scientific Instruments , 1932, Nature.

[28]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[29]  H E M Journal of Neurophysiology , 1938, Nature.

[30]  T. Velte,et al.  Automatic characterization and classification of ganglion cells from the salamander retina , 1999, The Journal of comparative neurology.

[31]  Roberto Marcondes Cesar Junior,et al.  Neural cell classification by Wavelets and multiscale curvature , 1998, Biological Cybernetics.

[32]  H. Kalmus Biological Cybernetics , 1972, Nature.

[33]  Vision Research , 1961, Nature.

[34]  R. Yager,et al.  Analysis of Flexible Structured Fuzzy Logic Controllers , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[35]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[36]  Lotfi A. Zadeh,et al.  Please Scroll down for Article International Journal of General Systems Fuzzy Sets and Systems* Fuzzy Sets and Systems* , 2022 .

[37]  R. Linden,et al.  Dendritic competition in the developing retina: Ganglion cell density gradients and laterally displaced dendrites , 1993, Visual Neuroscience.

[38]  Y. Fukuda,et al.  Morphological correlates of physiologically identified Y-, X-, and W-cells in cat retina. , 1984, Journal of neurophysiology.

[39]  Luciano da Fontoura Costa,et al.  Computer-vision-based extraction of neural dendrograms , 1999, Journal of Neuroscience Methods.

[40]  Y. Fukuda,et al.  Number, distribution, and morphology of retinal ganglion cells with axons regenerated into peripheral nerve graft in adult cats , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[41]  Y. Fukuda,et al.  Fractal analysis of ganglion cell dendritic branching patterns of the rat and cat retinae. , 1989, Neuroscience research. Supplement : the official journal of the Japan Neuroscience Society.

[42]  M. D.,et al.  Astronomy , 1880, Nature.

[43]  Luciano da Fontoura Costa Computer vision based morphometric characterization of neural cells , 1995 .

[44]  M. J. Friedlander,et al.  Morphogenesis and territorial coverage by isolated mammalian retinal ganglion cells , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[45]  C. Ellis Visual Neuroscience , 1987 .

[46]  A. Rosenfeld,et al.  IEEE TRANSACTIONS ON SYSTEMS , MAN , AND CYBERNETICS , 2022 .

[47]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .