Three-Dimensional Beam Propagation Analysis of Quasi-Phase Matched Second Harmonic Generation Devices with Triangular and Semi-Circular Domain Inversion Profiles

A three-dimensional beam propagation method based on a finite element scheme is described for the analysis of second harmonic generation devices. For the wide-angle beam propagation analysis, the Padé approximation is applied to the differential operator along the propagation direction. In order to avoid spurious reflection from the computational windows edges, the transparent boundary condition is introduced. Numerical results are shown for quasi-phase matched second harmonic generation devices using periodically domain-inverted LiNbO3 and LiTaO3 waveguides. The influences of the shape of domaininverted regions and the inversion width on the conversion efficiencies are investigated in detail. key words: nite element method, beam propagation method,

[1]  J. M. Arnold,et al.  Modeling second-order nonlinear effects in optical waveguides using a parallel-processing beam propagation method , 1995 .

[2]  Masanori Koshiba,et al.  Finite element beam propagation method for anisotropic optical waveguides , 1999 .

[3]  M. Koshiba,et al.  A wide-angle finite-element beam propagation method , 1996, IEEE Photonics Technology Letters.

[4]  G. R. Hadley,et al.  Transparent boundary condition for beam propagation. , 1991, Optics letters.

[5]  M. E. Cox Handbook of Optics , 1980 .

[6]  M. Papuchon,et al.  Second-harmonic generation efficiency in periodically poled LiNbO/sub 3/ waveguides , 1994 .

[7]  M. Fejer,et al.  Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide , 1989 .

[8]  Masanori Koshiba,et al.  Finite element beam propagation method for three-dimensional optical waveguide structures , 1997 .

[9]  Fredrik Laurell,et al.  Fabrication of periodically domain-inverted channel waveguides in lithium niobate for second harmonic generation , 1989 .

[10]  F. Laurell,et al.  Blue light generated by frequency doubling of laser diode light in a lithium niobate channel waveguide , 1989, IEEE Photonics Technology Letters.

[11]  Masanori Koshiba,et al.  Numerical study of guided-wave sum-frequency generation through second-order nonlinear parametric processes , 1991 .

[12]  R Srivastava,et al.  Efficient quasi-phase-matched blue second-harmonic generation in LiNbO(3) channel waveguides by a second-order grating. , 1992, Optics letters.

[13]  A. Maruta,et al.  Transparent boundary for the finite-element beam-propagation method. , 1993, Optics letters.

[15]  Kazuhisa Yamamoto,et al.  Highly efficient quasi‐phase‐matched second‐harmonic generation using a first‐order periodically domain‐inverted LiTaO3 waveguide , 1992 .

[16]  Yasuo Kitaoka,et al.  High power blue light generation by frequency doubling of a laser diode in a periodically domain‐inverted LiTaO3 waveguide , 1993 .

[17]  Tetsuo Taniuchi,et al.  Second‐harmonic generation of blue light in a LiTaO3 waveguide , 1991 .

[18]  W. J. Kozlovsky,et al.  Blue light generation by frequency doubling in periodically poled lithium niobate channel waveguide , 1989 .

[19]  G. R. Hadley,et al.  Wide-angle beam propagation using Pade approximant operators. , 1992, Optics letters.

[20]  Lars Thylén,et al.  A propagating beam method analysis of nonlinear effects in optical waveguides , 1984 .

[21]  N. Bloembergen,et al.  Interactions between light waves in a nonlinear dielectric , 1962 .

[22]  M. Adams,et al.  Optical waves in crystals , 1984, IEEE Journal of Quantum Electronics.