Classical and Bayesian Analysis of a Probit Panel Data Model with Unobserved Individual Heterogeneity and Autocorrelated Errors

In this paper, we perform both classical and Bayesian analysis of a panel probit model with unobserved individual heterogeneity and serially correlated errors. In the classical part, we use E¢ cient Importance Sampling (EIS) in evaluating a sequentially factorized simulated maximum likelihood function. In the Bayesian part, we utilize the Markov Chain Monte Carlo (MCMC) sampling scheme, augmenting the data with latent variables. We sample the unobserved individual heterogeneity component as one Gibbs block drawing from a piece-wise linear approximation to the marginal posterior density constructed with a nonparametric form of EIS.

[1]  Jean-François Richard,et al.  Improving MCMC Using Efficient Importance Sampling , 2006, Comput. Stat. Data Anal..

[2]  Jean-Francois Richard,et al.  Simulation Techniques for Panels: Efficient Importance Sampling , 2008 .

[3]  J. Richard,et al.  Efficient high-dimensional importance sampling , 2007 .

[4]  J. Richard,et al.  An E¢ cient Approach to Analyzing State-Space Representations , 2007 .

[5]  Bayesian Statistics and Marketing by P. E. Rossi, G. M. Allenby and R. McCulloch , 2006 .

[6]  J. Richard,et al.  Classical and Bayesian Analysis of Univariate and Multivariate Stochastic Volatility Models , 2006 .

[7]  M. Tudela,et al.  Modelling Currency Crises in Emerging Markets: A Dynamic Probit Model with Unobserved Heterogeneity and Autocorrelated Errors , 2006 .

[8]  J. Richard,et al.  Improving MCMC Using E cient Importance Sampling , 2006 .

[9]  Wei Zhang,et al.  Simulation Estimation of Dynamic Discrete Choice Panel Models with Accelerated Importance Samplers , 2004 .

[10]  Luc Bauwens,et al.  Dynamic Latent Factor Models for Intensity Processes , 2004 .

[11]  J. Richard,et al.  Univariate and Multivariate Stochastic Volatility Models: Estimation and Diagnostics , 2003 .

[12]  K. Train Discrete Choice Methods with Simulation , 2003 .

[13]  Peter E. Rossi,et al.  Bayesian Statistics and Marketing , 2005 .

[14]  Philip Hans Franses,et al.  On modeling panels of time series * , 2002 .

[15]  William H. Greene,et al.  Convenient estimators for the panel probit model: Further results , 2002 .

[16]  R. Paap What are the advantages of MCMC based inference in latent variable models? , 2002 .

[17]  Jeffrey M. Wooldridge,et al.  Solutions Manual and Supplementary Materials for Econometric Analysis of Cross Section and Panel Data , 2003 .

[18]  Roman Liesenfeld,et al.  Estimating time series models for count data using efficient importance sampling , 2001 .

[19]  J. Geweke,et al.  Computationally Intensive Methods for Integration in Econometrics , 2001 .

[20]  Luc Bauwens,et al.  Bayesian Inference in Dynamic Econometric Models , 2000 .

[21]  J. Richard,et al.  Simulation-based Inference in Econometrics: Accelerated Monte Carlo integration: an application to dynamic latent variables models , 2000 .

[22]  J. Inkmann,et al.  Misspecified Heteroskedasticity in the Panel Probit Model : a Small Sample Comparison of GMM and SML Estimators , 2000 .

[23]  D. Hyslop,et al.  State dependence, serial correlation and heterogeneity in intertemporal labor force , 1999 .

[24]  Irene Bertschek,et al.  Convenient estimators for the panel probit model , 1998 .

[25]  Marno Verbeek,et al.  Whose wages do unions raise? A dynamic model of unionism and wage rate determination for young men , 1998 .

[26]  Lung-fei Lee,et al.  Simulated Maximum Likelihood Estimation of Dynamic Discrete Choice Statistical Models Some Monte Carlo Results , 1997 .

[27]  Christian Gourieroux,et al.  Simulation-based econometric methods , 1996 .

[28]  Irene Bertschek,et al.  Product and Process Innovation As a Response To Increasing Imports and Foreign Direct-investment , 1995 .

[29]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[30]  J. Richard,et al.  Accelerated gaussian importance sampler with application to dynamic latent variable models , 1993 .

[31]  V. Hajivassiliou,et al.  Smooth unbiased multivariate probability simulators for maximum likelihood estimation of limited dependent variable models , 1993 .

[32]  S. Chib,et al.  Bayesian analysis of binary and polychotomous response data , 1993 .

[33]  D. Wise Topics in the Economics of Aging , 1992 .

[34]  D. McFadden,et al.  The method of simulated scores for the estimation of LDV models , 1998 .

[35]  John Geweke,et al.  Efficient Simulation from the Multivariate Normal and Student-t Distributions Subject to Linear Constraints and the Evaluation of Constraint Probabilities , 1991 .

[36]  L. Kotlikoff,et al.  Health, Children, and Elderly Living Arrangements: a Multiperiod-Multinomial Probit Model with Unobserved Heterogeneity and Autocorrelated Errors , 1990 .

[37]  D. McFadden A Method of Simulated Moments for Estimation of Discrete Response Models Without Numerical Integration , 1989 .

[38]  Michael Keane,et al.  A Computationally Practical Simulation Estimator for Panel Data , 1994 .

[39]  C. N. Morris,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[40]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[41]  L. Hansen Large Sample Properties of Generalized Method of Moments Estimators , 1982 .

[42]  Robert A. Moffitt,et al.  A COMPUTATIONALLY EFFICIENT QUADRATURE PROCEDURE FOR THE ONE-FACTOR MULTINOMIAL PROBIT MODEL , 1982 .

[43]  J. Richard Bayesian analysis of the regression model when the disturbances are generated by an autoregressive process , 1977 .

[44]  A. Zellner An Introduction to Bayesian Inference in Econometrics , 1971 .