Rational series for multiple zeta and log gamma functions
暂无分享,去创建一个
[1] M. Rubinstein. Identities for the Hurwitz zeta function, Gamma function, and L-functions , 2012, 1206.1992.
[2] T. R. Riley,et al. The Absence of Efficient Dual Pairs of Spanning Trees in Planar Graphs , 2006, Electron. J. Comb..
[3] F. T. Howard. CONGRUENCES AND RECURRENCES FOR BERNOULLI NUMBERS OF HIGHER ORDER , 1994 .
[4] N. E. Nörlund. Vorlesungen über Differenzenrechnung , 1924 .
[5] Gergýo Nemes. An Asymptotic Expansion for the Bernoulli Numbers of the Second Kind , 2011 .
[6] Llan Vardi,et al. Determinants of Laplacians and multiple gamma functions , 1988 .
[7] Philippe Flajolet,et al. Singularity Analysis of Generating Functions , 1990, SIAM J. Discret. Math..
[8] Steven Roman. The Umbral Calculus , 1984 .
[9] Károly Jordán. Calculus of finite differences , 1951 .
[10] Renzo Sprugnoli,et al. The Cauchy numbers , 2006, Discret. Math..
[11] Michael O. Rubinstein. Identities for the Riemann zeta function , 2008 .
[12] Helmut Hasse,et al. Number Theory , 2020, An Introduction to Probabilistic Number Theory.
[13] Henri Cohen,et al. Number Theory: Volume II: Analytic and Modern Tools , 2007 .
[14] Larry Ericksen,et al. Sum of powers from uniform distribution moments , 2002 .
[15] Simon Ruijsenaars,et al. On Barnes' Multiple Zeta and Gamma Functions , 2000 .
[16] T. Apostol. Introduction to analytic number theory , 1976 .
[17] E. Alkan. Values of Dirichlet L-functions, Gauss sums and trigonometric sums , 2011 .
[18] L. Washington. Introduction to Cyclotomic Fields , 1982 .
[19] Feng-Zhen Zhao. Some Properties of a New Class of Generalized Cauchy Numbers , 2012 .
[20] Philippe Flajolet,et al. A Hybrid of Darboux's Method and Singularity Analysis in Combinatorial Asymptotics , 2006, Electron. J. Comb..