The reduced immersed method for real-time fluid-elastic solid interaction and contact simulation

We introduce the Reduced Immersed Method (RIM) for the real-time simulation of two-way coupled incompressible fluids and elastic solids and the interaction of multiple deformables with (self-)collisions. Our framework is based on a novel discretization of the immersed boundary equations of motion, which model fluid and deformables as a single incompressible medium and their interaction as a unified system on a fixed domain combining Eulerian and Lagrangian terms. One advantage for real-time simulations resulting from this modeling is that two-way coupling phenomena can be faithfully simulated while avoiding costly calculations such as tracking the deforming fluid-solid interfaces and the associated fluid boundary conditions. Our discretization enables the combination of a PIC/FLIP fluid solver with a reduced-order Lagrangian elasticity solver. Crucial for the performance of RIM is the efficient transfer of information between the elasticity and the fluid solver and the synchronization of the Lagrangian and Eulerian settings. We introduce the concept of twin subspaces that enables an efficient reduced-order modeling of the transfer. Our experiments demonstrate that RIM handles complex meshes and highly resolved fluids for large time steps at high framerates on off-the-shelf hardware, even in the presence of high velocities and rapid user interaction. Furthermore, it extends reduced-order elasticity solvers such as Hyper-Reduced Projective Dynamics with natural collision handling.

[1]  Pradeep Sen,et al.  Scalable laplacian eigenfluids , 2018, ACM Trans. Graph..

[2]  Mark Pauly,et al.  Projective dynamics , 2014, ACM Trans. Graph..

[3]  Lucy T. Zhang Immersed finite element method for fluid-structure interactions , 2007 .

[4]  Sung Yong Shin,et al.  A Hybrid Approach to Multiple Fluid Simulation using Volume Fractions , 2010, Comput. Graph. Forum.

[5]  Adam W. Bargteil,et al.  An introduction to physics-based animation , 2018, SIGGRAPH Courses.

[6]  H. Walker Quasi-Newton Methods , 1978 .

[7]  Jing Li,et al.  FEPR: fast energy projection for real-time simulation of deformable objects , 2018, ACM Trans. Graph..

[8]  Hans-Peter Seidel,et al.  Vector field based shape deformations , 2006, ACM Trans. Graph..

[9]  Jirí Zára,et al.  Skinning arbitrary deformations , 2007, SI3D.

[10]  Yin Yang,et al.  Expediting precomputation for reduced deformable simulation , 2015, ACM Trans. Graph..

[11]  Kenny Erleben,et al.  Multiphase Flow of Immiscible Fluids on Unstructured Moving Meshes , 2014, IEEE Transactions on Visualization and Computer Graphics.

[12]  Nadia Magnenat-Thalmann,et al.  Stable and Fast Fluid–Solid Coupling for Incompressible SPH , 2015, Comput. Graph. Forum.

[13]  Hans-Peter Seidel,et al.  An efficient construction of reduced deformable objects , 2013, ACM Trans. Graph..

[14]  Jie Li,et al.  ADMM ⊇ Projective Dynamics: Fast Simulation of Hyperelastic Models with Dynamic Constraints , 2017, IEEE Trans. Vis. Comput. Graph..

[15]  Huamin Wang,et al.  A chebyshev semi-iterative approach for accelerating projective and position-based dynamics , 2015, ACM Trans. Graph..

[16]  Omar Zarifi,et al.  A positive-definite cut-cell method for strong two-way coupling between fluids and deformable bodies , 2017, Symposium on Computer Animation.

[17]  Yiying Tong,et al.  Model-reduced variational fluid simulation , 2015, ACM Trans. Graph..

[18]  Doug L. James,et al.  Subspace self-collision culling , 2010, ACM Trans. Graph..

[19]  James F. O'Brien,et al.  Simultaneous coupling of fluids and deformable bodies , 2006, SCA '06.

[20]  Doug L. James,et al.  BD-tree: output-sensitive collision detection for reduced deformable models , 2004, SIGGRAPH 2004.

[21]  Chenfanfu Jiang,et al.  Anisotropic elastoplasticity for cloth, knit and hair frictional contact , 2017, ACM Trans. Graph..

[22]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[23]  Lucy T. Zhang,et al.  Immersed finite element method , 2004 .

[24]  Tae-Yong Kim,et al.  Strain based dynamics , 2014, SCA '14.

[25]  M. Teschner,et al.  Meshless deformations based on shape matching , 2005, SIGGRAPH 2005.

[26]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[27]  Tiantian Liu,et al.  Quasi-newton methods for real-time simulation of hyperelastic materials , 2017, TOGS.

[28]  Tae-Yong Kim,et al.  Unified particle physics for real-time applications , 2014, ACM Trans. Graph..

[29]  Christopher Wojtan,et al.  A Dimension‐reduced Pressure Solver for Liquid Simulations , 2015, Comput. Graph. Forum.

[30]  Matthias Müller,et al.  Real-time Eulerian water simulation using a restricted tall cell grid , 2011, ACM Trans. Graph..

[31]  Matthias Teschner,et al.  An Implicit SPH Formulation for Incompressible Linearly Elastic Solids , 2018, Comput. Graph. Forum.

[32]  Ronald Fedkiw,et al.  Two-way coupling of fluids to reduced deformable bodies , 2016, Symposium on Computer Animation.

[33]  James F. O'Brien,et al.  Eurographics/acm Siggraph Symposium on Computer Animation (2007) Liquid Simulation on Lattice-based Tetrahedral Meshes , 2022 .

[34]  James F. O'Brien,et al.  Simulating liquids and solid-liquid interactions with lagrangian meshes , 2013, TOGS.

[35]  Joris Degroote,et al.  Partitioned Simulation of Fluid-Structure Interaction , 2013 .

[36]  Aimin Hao,et al.  Realtime Two‐Way Coupling of Meshless Fluids and Nonlinear FEM , 2012, Comput. Graph. Forum.

[37]  R. Pajarola,et al.  Predictive-corrective incompressible SPH , 2009, SIGGRAPH 2009.

[38]  Jing Li,et al.  Laplacian Damping for Projective Dynamics , 2018, VRIPHYS.

[39]  Theodore Kim,et al.  Simulating articulated subspace self-contact , 2014, ACM Trans. Graph..

[40]  Jan Bender,et al.  Projective fluids , 2016, MIG.

[41]  Jean-Michel Dischler,et al.  Simulating Fluid-Solid Interaction , 2003, Graphics Interface.

[42]  Dinesh K. Pai,et al.  DyRT: dynamic response textures for real time deformation simulation with graphics hardware , 2002, SIGGRAPH.

[43]  Boyce E. Griffith,et al.  An Immersed Boundary method with divergence-free velocity interpolation and force spreading , 2017, J. Comput. Phys..

[44]  Chen Shen,et al.  Interactive Deformation Using Modal Analysis with Constraints , 2003, Graphics Interface.

[45]  Craig Schroeder,et al.  Optimization Integrator for Large Time Steps , 2014, IEEE Transactions on Visualization and Computer Graphics.

[46]  Greg Turk,et al.  Rigid fluid: animating the interplay between rigid bodies and fluid , 2004, ACM Trans. Graph..

[47]  Robert Bridson,et al.  MultiFLIP for energetic two-phase fluid simulation , 2012, TOGS.

[48]  Dinesh K. Pai,et al.  Eulerian-on-lagrangian simulation , 2013, TOGS.

[49]  Ronald Fedkiw,et al.  Two-way coupling of fluids to rigid and deformable solids and shells , 2008, ACM Trans. Graph..

[50]  Andre Pradhana,et al.  A moving least squares material point method with displacement discontinuity and two-way rigid body coupling , 2018, ACM Trans. Graph..

[51]  Jernej Barbic,et al.  Real-Time subspace integration for St. Venant-Kirchhoff deformable models , 2005, ACM Trans. Graph..

[52]  Miles Macklin,et al.  Position based fluids , 2013, ACM Trans. Graph..

[53]  Kui Wu,et al.  Fast Fluid Simulations with Sparse Volumes on the GPU , 2018, Comput. Graph. Forum.

[54]  Theodore Kim,et al.  Eulerian solid-fluid coupling , 2016, ACM Trans. Graph..

[55]  G. Hou,et al.  Numerical Methods for Fluid-Structure Interaction — A Review , 2012 .

[56]  Jernej Barbic,et al.  Six-DoF Haptic Rendering of Contact Between Geometrically Complex Reduced Deformable Models , 2008, IEEE Transactions on Haptics.

[57]  Yuri Bazilevs,et al.  An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. , 2015, Computer methods in applied mechanics and engineering.

[58]  Jernej Barbic,et al.  FEM simulation of 3D deformable solids: a practitioner's guide to theory, discretization and model reduction , 2012, SIGGRAPH '12.

[59]  Miguel A. Otaduy,et al.  Bounded normal trees for reduced deformations of triangulated surfaces , 2009, SCA '09.

[60]  Matthias Teschner,et al.  Implicit Incompressible SPH , 2014, IEEE Transactions on Visualization and Computer Graphics.

[61]  Ronald Fedkiw,et al.  Simulating water and smoke with an octree data structure , 2004, ACM Trans. Graph..

[62]  Chenfanfu Jiang,et al.  Multi-species simulation of porous sand and water mixtures , 2017, ACM Trans. Graph..

[63]  Bailin Deng,et al.  Anderson acceleration for geometry optimization and physics simulation , 2018, ACM Trans. Graph..

[64]  Theodore Kim,et al.  Optimizing cubature for efficient integration of subspace deformations , 2008, SIGGRAPH Asia '08.

[65]  Yin Yang,et al.  Descent methods for elastic body simulation on the GPU , 2016, ACM Trans. Graph..

[66]  Matthias Teschner,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Weakly Compressible Sph for Free Surface Flows , 2022 .

[67]  Denis Zorin,et al.  Subspace integration with local deformations , 2013, ACM Trans. Graph..

[68]  Robert Bridson,et al.  Animating sand as a fluid , 2005, ACM Trans. Graph..

[69]  Jan Bender,et al.  Position-based simulation of continuous materials , 2014, Comput. Graph..

[70]  Ronald Fedkiw,et al.  Multiple interacting liquids , 2006, ACM Trans. Graph..

[71]  Ronald Fedkiw,et al.  A symmetric positive definite formulation for monolithic fluid structure interaction , 2011, J. Comput. Phys..

[72]  Ronald Fedkiw,et al.  Coupling water and smoke to thin deformable and rigid shells , 2005, SIGGRAPH '05.

[73]  Chenfanfu Jiang,et al.  The affine particle-in-cell method , 2015, ACM Trans. Graph..

[74]  Robert Bridson,et al.  A fast variational framework for accurate solid-fluid coupling , 2007, ACM Trans. Graph..

[75]  David I. W. Levin,et al.  Eulerian solid simulation with contact , 2011, SIGGRAPH 2011.

[76]  D. Sulsky Erratum: Application of a particle-in-cell method to solid mechanics , 1995 .

[77]  Elmar Eisemann,et al.  Hyper-reduced projective dynamics , 2018, ACM Trans. Graph..

[78]  Markus H. Gross,et al.  Particle-based fluid simulation for interactive applications , 2003, SCA '03.

[79]  Andre Pradhana,et al.  GPU optimization of material point methods , 2018, ACM Trans. Graph..

[80]  Victor B. Zordan,et al.  An extended partitioned method for conservative solid-fluid coupling , 2018, ACM Trans. Graph..

[81]  Dinesh K. Pai,et al.  Eulerian solid simulation with contact , 2011, ACM Trans. Graph..

[82]  Aimin Hao,et al.  An efficient FLIP and shape matching coupled method for fluid–solid and two-phase fluid simulations , 2018, The Visual Computer.