Do multipartite correlations speed up adiabatic quantum computation or quantum annealing?

Quantum correlations are thought to be the reason why certain quantum algorithms overcome their classical counterparts. Since the nature of this resource is still not fully understood, we shall investigate how multipartite entanglement and non-locality among qubits vary as the quantum computation runs. We shall encounter that quantum measures on the whole system cannot account for their corresponding speedup.

[1]  Paul Adrien Maurice Dirac,et al.  On the Theory of quantum mechanics , 1926 .

[2]  P. Dirac The Quantum Theory of the Emission and Absorption of Radiation , 1927 .

[3]  A. Messiah Quantum Mechanics , 1961 .

[4]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[5]  藤田 純一,et al.  A.L. Fetter and J.D. Walecka: Quantum Theory of Many-Particle Systems, McGraw-Hill Book Co., New York, 1971, 601頁, 15×23cm, 7,800円. , 1971 .

[6]  A. Fetter,et al.  Quantum Theory of Many-Particle Systems , 1971 .

[7]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[8]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[9]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[10]  Svetlichny,et al.  Distinguishing three-body from two-body nonseparability by a Bell-type inequality. , 1987, Physical review. D, Particles and fields.

[11]  B. Apolloni,et al.  Quantum stochastic optimization , 1989 .

[12]  Ray,et al.  Sherrington-Kirkpatrick model in a transverse field: Absence of replica symmetry breaking due to quantum fluctuations. , 1989, Physical review. B, Condensed matter.

[13]  Kiel T. Williams,et al.  Extreme quantum entanglement in a superposition of macroscopically distinct states. , 1990, Physical review letters.

[14]  Ardehali Bell inequalities with a magnitude of violation that grows exponentially with the number of particles. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[15]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[16]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[17]  A. V. Belinskii,et al.  Interference of light and Bell's theorem , 1993 .

[18]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[19]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[20]  J. Doll,et al.  Quantum annealing: A new method for minimizing multidimensional functions , 1994, chem-ph/9404003.

[21]  R. Jozsa,et al.  Quantum Computation and Shor's Factoring Algorithm , 1996 .

[22]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[23]  Colin P. Williams,et al.  Explorations in quantum computing , 1997 .

[24]  H. Bechmann-Pasquinucci,et al.  Bell inequality, Bell states and maximally entangled states for n qubits , 1998, quant-ph/9804045.

[25]  G. Doolen,et al.  Introduction to Quantum Computers , 1998 .

[26]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[27]  B. Terhal Bell inequalities and the separability criterion , 1999, quant-ph/9911057.

[28]  Rosenbaum,et al.  Quantum annealing of a disordered magnet , 1999, Science.

[29]  Colin P. Williams Quantum Computing and Quantum Communications , 1999, Lecture Notes in Computer Science.

[30]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[31]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[32]  Michael A. Nielsen,et al.  Quantum Computation and Quantum Information Theory , 2000 .

[33]  Saurya Das,et al.  Adiabatic quantum computation and Deutsch's algorithm , 2001, quant-ph/0111032.

[34]  A. Galindo,et al.  Information and computation: Classical and quantum aspects , 2001, quant-ph/0112105.

[35]  Hoi-Kwong Lo,et al.  Introduction to Quantum Computation Information , 2002 .

[36]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[37]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[38]  E. Tosatti,et al.  Quantum annealing of the traveling-salesman problem. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  J. Latorre,et al.  Universality of entanglement and quantum-computation complexity , 2003, quant-ph/0311017.

[40]  A. Shimizu,et al.  Macroscopic entanglement in Quantum Computation , 2005, quant-ph/0505057.

[41]  S. Stepney,et al.  Searching for highly entangled multi-qubit states , 2005 .

[42]  O. Biham,et al.  Entangled quantum states generated by Shor's factoring algorithm (6 pages) , 2005, quant-ph/0510042.

[43]  V. Scarani,et al.  Nonlocality of cluster states of qubits , 2004, quant-ph/0405119.

[44]  R. Schutzhold,et al.  Adiabatic quantum algorithms as quantum phase transitions: First versus second order , 2006, quant-ph/0608017.

[45]  Peter J. Love,et al.  A Characterization of Global Entanglement , 2007, Quantum Inf. Process..

[46]  Daowen Qiu,et al.  ENTANGLEMENT IN ADIABATIC QUANTUM SEARCHING ALGORITHMS , 2008 .

[47]  G. Tóth,et al.  Entanglement detection , 2008, 0811.2803.

[48]  Dieter Suter,et al.  Quantum adiabatic algorithm for factorization and its experimental implementation. , 2008, Physical review letters.

[49]  Gernot Schaller,et al.  The role of symmetries in adiabatic quantum algorithms , 2007, Quantum Inf. Comput..

[50]  M. W. Johnson,et al.  A scalable control system for a superconducting adiabatic quantum optimization processor , 2009, 0907.3757.

[51]  M. Casas,et al.  Nonlocality and entanglement in the XY model , 2010, 1007.0983.

[52]  M. W. Johnson,et al.  A scalable readout system for a superconducting adiabatic quantum optimization system , 2009, 0905.0891.

[53]  J. Batle,et al.  Nonlocality and entanglement in qubit systems , 2011, 1102.4653.

[54]  M. W. Johnson,et al.  Quantum annealing with manufactured spins , 2011, Nature.

[55]  Jiangfeng Du,et al.  Quantum factorization of 143 on a dipolar-coupling nuclear magnetic resonance system. , 2012, Physical review letters.

[56]  F. Spedalieri Detecting entanglement with partial state information , 2012, 1208.0860.

[57]  M. W. Johnson,et al.  Entanglement in a Quantum Annealing Processor , 2014, 1401.3500.

[58]  E. Cohen,et al.  Quantum annealing – foundations and frontiers , 2014, The European Physical Journal Special Topics.

[59]  Daniel A. Lidar,et al.  Consistency tests of classical and quantum models for a quantum annealer , 2014, 1403.4228.

[60]  R. Moessner,et al.  Quantum annealing: The fastest route to quantum computation? , 2014, The European Physical Journal Special Topics.

[61]  Ahmed Farouk,et al.  Global versus local quantum correlations in the Grover search algorithm , 2016, Quantum Inf. Process..

[62]  Óscar Promio Muñoz Quantum Annealing in the transverse Ising Model , 2018 .