Qubit-Efficient Randomized Quantum Algorithms for Linear Algebra

We propose a class of randomized quantum algorithms for the task of sampling from matrix functions, without the use of quantum block encodings or any other coherent oracle access to the matrix elements. As such, our use of qubits is purely algorithmic, and no additional qubits are required for quantum data structures. For $N\times N$ Hermitian matrices, the space cost is $\log(N)+1$ qubits and depending on the structure of the matrices, the gate complexity can be comparable to state-of-the-art methods that use quantum data structures of up to size $O(N^2)$, when considering equivalent end-to-end problems. Within our framework, we present a quantum linear system solver that allows one to sample properties of the solution vector, as well as an algorithm for sampling properties of ground states of Hamiltonians. As a concrete application, we combine these two sub-routines to present a scheme for calculating Green's functions of quantum many-body systems.

[1]  Simon Apers,et al.  A (simple) classical algorithm for estimating Betti numbers , 2022, ArXiv.

[2]  Peter D. Johnson,et al.  Quantum algorithm for ground state energy estimation using circuit depth with exponentially improved dependence on precision , 2022, 2209.06811.

[3]  B. D. Clader,et al.  Quantum Resources Required to Block-Encode a Matrix of Classical Data , 2022, IEEE Transactions on Quantum Engineering.

[4]  Yu Tong,et al.  Ground state preparation and energy estimation on early fault-tolerant quantum computers via quantum eigenvalue transformation of unitary matrices , 2022, PRX Quantum.

[5]  Lin Lin,et al.  Explicit Quantum Circuits for Block Encodings of Certain Sparse Matrice , 2022, arXiv.org.

[6]  Lin Lin,et al.  Lecture Notes on Quantum Algorithms for Scientific Computation , 2022, ArXiv.

[7]  Franccois Le Gall,et al.  Dequantizing the Quantum singular value transformation: hardness and applications to Quantum chemistry and the Quantum PCP conjecture , 2021, STOC.

[8]  Pedro C. S. Costa,et al.  Optimal Scaling Quantum Linear-Systems Solver via Discrete Adiabatic Theorem , 2021, PRX Quantum.

[9]  M. Berta,et al.  A randomized quantum algorithm for statistical phase estimation , 2021, Physical review letters.

[10]  Peter D. Johnson,et al.  Computing Ground State Properties with Early Fault-Tolerant Quantum Computers , 2021, Quantum.

[11]  A. Montanaro,et al.  Faster Quantum-inspired Algorithms for Solving Linear Systems , 2021, ACM Transactions on Quantum Computing.

[12]  Lin Lin,et al.  Heisenberg-Limited Ground-State Energy Estimation for Early Fault-Tolerant Quantum Computers , 2021, PRX Quantum.

[13]  Paul K. Faehrmann,et al.  Randomizing multi-product formulas for Hamiltonian simulation , 2021, Quantum.

[14]  Zhao Song,et al.  An improved quantum-inspired algorithm for linear regression , 2020, Quantum.

[15]  Lin Lin,et al.  Quantum Linear System Solver Based on Time-optimal Adiabatic Quantum Computing and Quantum Approximate Optimization Algorithm , 2019, ACM Transactions on Quantum Computing.

[16]  E. Dumitrescu,et al.  Quantum Algorithms for Ground-State Preparation and Green's Function Calculation , 2021, 2112.05731.

[17]  I. Chuang,et al.  Grand Unification of Quantum Algorithms , 2021, PRX Quantum.

[18]  C. Gidney Stim: a fast stabilizer circuit simulator , 2021, Quantum.

[19]  Minh C. Tran,et al.  Theory of Trotter Error with Commutator Scaling , 2021 .

[20]  M. Cerezo,et al.  Variational quantum algorithms , 2020, Nature Reviews Physics.

[21]  Earl T Campbell,et al.  Early fault-tolerant simulations of the Hubbard model , 2020, Quantum Science and Technology.

[22]  O. Kyriienko,et al.  Hamiltonian Operator Approximation for Energy Measurement and Ground-State Preparation , 2020, PRX Quantum.

[23]  Kianna Wan,et al.  Exponentially faster implementations of Select(H) for fermionic Hamiltonians , 2020, Quantum.

[24]  P. Rebentrost,et al.  Near-term quantum algorithms for linear systems of equations with regression loss functions , 2019, New Journal of Physics.

[25]  Ying Li,et al.  Variational algorithms for linear algebra. , 2019, Science bulletin.

[26]  Connor T. Hann,et al.  Resilience of Quantum Random Access Memory to Generic Noise , 2020, PRX Quantum.

[27]  Patrick J. Coles,et al.  Variational Quantum Linear Solver. , 2020 .

[28]  Lin Lin,et al.  Near-optimal ground state preparation , 2020, Quantum.

[29]  B. Bauer,et al.  Quantum Algorithms for Quantum Chemistry and Quantum Materials Science. , 2020, Chemical reviews.

[30]  Lin Lin,et al.  Optimal polynomial based quantum eigenstate filtering with application to solving quantum linear systems , 2019, Quantum.

[31]  Tongyang Li,et al.  Sampling-based sublinear low-rank matrix arithmetic framework for dequantizing Quantum machine learning , 2019, STOC.

[32]  Taichi Kosugi,et al.  Construction of Green's functions on a quantum computer: Quasiparticle spectra of molecules , 2019, Physical Review A.

[33]  Michele Mosca,et al.  Fault-Tolerant Resource Estimation of Quantum Random-Access Memories , 2019, IEEE Transactions on Quantum Engineering.

[34]  Oleksandr Kyriienko,et al.  Quantum inverse iteration algorithm for near-term quantum devices , 2019 .

[35]  N. Linke,et al.  Dynamical mean field theory algorithm and experiment on quantum computers , 2019, 1910.04735.

[36]  Yuya O. Nakagawa,et al.  Calculation of the Green's function on near-term quantum computers , 2019, 1909.12250.

[37]  Liang Jiang,et al.  Hardware-Efficient Quantum Random Access Memory with Hybrid Quantum Acoustic Systems. , 2019, Physical review letters.

[38]  Ryan Babbush,et al.  Qubitization of Arbitrary Basis Quantum Chemistry Leveraging Sparsity and Low Rank Factorization , 2019, Quantum.

[39]  E. Campbell Random Compiler for Fast Hamiltonian Simulation. , 2018, Physical review letters.

[40]  Guang Hao Low,et al.  Hamiltonian simulation with nearly optimal dependence on spectral norm , 2018, STOC.

[41]  Nathan Wiebe,et al.  Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics , 2018, STOC.

[42]  R. Somma,et al.  Quantum Algorithms for Systems of Linear Equations Inspired by Adiabatic Quantum Computing. , 2018, Physical review letters.

[43]  Stacey Jeffery,et al.  The power of block-encoded matrix powers: improved regression techniques via faster Hamiltonian simulation , 2018, ICALP.

[44]  S. Brierley,et al.  Accelerated Variational Quantum Eigensolver. , 2018, Physical review letters.

[45]  J. Ignacio Cirac,et al.  Faster ground state preparation and high-precision ground energy estimation with fewer qubits , 2017, Journal of Mathematical Physics.

[46]  Ronald de Wolf,et al.  Quantum Computing: Lecture Notes , 2015, ArXiv.

[47]  Hua Xiang,et al.  Quantum circulant preconditioner for a linear system of equations , 2018, Physical Review A.

[48]  Alexandru Paler,et al.  Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity , 2018, Physical Review X.

[49]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[50]  Dmitri Maslov,et al.  Toward the first quantum simulation with quantum speedup , 2017, Proceedings of the National Academy of Sciences.

[51]  Andrew M. Childs,et al.  Quantum Algorithm for Systems of Linear Equations with Exponentially Improved Dependence on Precision , 2015, SIAM J. Comput..

[52]  Andrew M. Childs,et al.  Exponential improvement in precision for simulating sparse Hamiltonians , 2013, Forum of Mathematics, Sigma.

[53]  Ashley Montanaro,et al.  Quantum algorithms: an overview , 2015, npj Quantum Information.

[54]  Andrew M. Childs,et al.  Hamiltonian Simulation with Nearly Optimal Dependence on all Parameters , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[55]  Andrew M. Childs,et al.  Simulating Hamiltonian dynamics with a truncated Taylor series. , 2014, Physical review letters.

[56]  B. D. Clader,et al.  Preconditioned quantum linear system algorithm. , 2013, Physical review letters.

[57]  Andris Ambainis,et al.  Variable time amplitude amplification and quantum algorithms for linear algebra problems , 2012, STACS.

[58]  Steve Mullett,et al.  Read the fine print. , 2009, RN.

[59]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[60]  Seth Lloyd,et al.  Quantum random access memory. , 2007, Physical review letters.

[61]  R. Vershynin,et al.  A Randomized Kaczmarz Algorithm with Exponential Convergence , 2007, math/0702226.

[62]  E. Knill,et al.  Optimal quantum measurements of expectation values of observables , 2006, quant-ph/0607019.

[63]  Giovanni Vignale,et al.  Quantum Theory of the Electron Liquid , 2005 .

[64]  Scott Aaronson,et al.  Improved Simulation of Stabilizer Circuits , 2004, ArXiv.

[65]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[66]  A. Fetter,et al.  Quantum Theory of Many-Particle Systems , 1971 .

[67]  J. Hubbard Calculation of Partition Functions , 1959 .