Efficient parallel multiselection on hypercubes

We study efficient parallel solutions to the problem of selecting r elements at specified ranks from a set of n arbitrary elements, known as multiselection, on a hypercube with p processors, p,r/spl les/n. We propose two parallel algorithms based on different approaches, where one requires processors to operate in the SIMD mode, and the other in the MIMD mode. Our SIMD algorithm runs in time O((log n log log n) min{r, log n}) when p=/spl Theta/(n), and O(n/sup /spl epsiv// min{r, (1-/spl epsiv/) log n}) when p=n/sup /spl epsiv// for any 0</spl epsiv/<1, where the latter is cost optimal when r/spl ges/p. Our MIMD algorithm runs in O(log n log log n log r) time when p=/spl Theta/(n), and in O(n/sup /spl epsiv// log r) time when p=n/sup /spl epsiv// for any 0</spl epsiv/<1, which is cost optimal for any r. Both algorithms are more efficient than the possible straightforward solutions and that of direct simulation of the optimal EREW algorithm.

[1]  Richard J. Cole An Optimally Efficient Selection Algorithm , 1988, Inf. Process. Lett..

[2]  Hong Shen Improved universal k-selection in hypercubes , 1992, Parallel Comput..

[3]  Rajeev Raman,et al.  Approximate and Exact Deterministic Parallel Selection , 1993, MFCS.

[4]  Vaughan R. Pratt,et al.  On Lower Bounds for Computing the i-th Largest Element , 1973, SWAT.

[5]  Laurent Hyafil Bounds for Selection , 1976, SIAM J. Comput..

[6]  Kurt Mehlhorn,et al.  Deterministic Simulation of Idealized Parallel Computers on More Realistic Ones , 1986, MFCS.

[7]  M. H. Schultz,et al.  Topological properties of hypercubes , 1988, IEEE Trans. Computers.

[8]  Selim G. Akl An Optimal Algorithm for Parallel Selection , 1984, Inf. Process. Lett..

[9]  Hong Shen Optimal Parallel Multiselection on EREW PRAM , 1997, Parallel Comput..

[10]  C. Greg Plaxton,et al.  Deterministic sorting in nearly logarithmic time on the hypercube and related computers , 1990, STOC '90.

[11]  Michael L. Fredman,et al.  Refined Complexity Analysis for Heap Operations , 1987, J. Comput. Syst. Sci..

[12]  Manuel Blum,et al.  Time Bounds for Selection , 1973, J. Comput. Syst. Sci..

[13]  Richard Cole,et al.  A Parallel Median Algorithm , 1985, Inf. Process. Lett..

[14]  Azriel Rosenfeld,et al.  Order Statistics on a Hypercube , 1988, Inf. Process. Lett..

[15]  David G. Kirkpatrick A Unified Lower Bound for Selection and Set Partitioning Problems , 1981, JACM.

[16]  Harold N. Gabow,et al.  A Counting Approach to Lower Bounds for Selection Problems , 1979, JACM.

[17]  Arnold Schönhage,et al.  Finding the Median , 1976, J. Comput. Syst. Sci..

[18]  Chee-Keng Yap,et al.  New upper bounds for selection , 1976, CACM.

[19]  C. Greg Plaxton On the network complexity of selection , 1989, 30th Annual Symposium on Foundations of Computer Science.