Diagnostics for regression dependence in tables re-ordered by the dominant correspondence analysis solution

Correspondence analysis is an exploratory technique for analyzing the interaction in a contingency table. Tables with meaningful orders of the rows and columns may be analyzed using a model-based correspondence analysis that incorporates order constraints. However, if there exists a permutation of the rows and columns of the contingency table so that the rows are regression dependent on the columns and, vice versa, the columns are regression dependent on the rows, then both implied orders are reflected in the first dimension of the unconstrained correspondence analysis [Schriever, B.F., 1983. Scaling of order dependent categorical variables with correspondence analysis. International Statistical Review 51, 225-238]. Thus, using unconstrained correspondence analysis, we may still find that the data fit an ordinal stochastic model. Fit measures are formulated that may be used to verify whether the re-ordered contingency table is regression dependent in either the rows or columns. Using several data examples, it is shown that the fit indices may complement the usual geometric interpretation of the unconstrained correspondence analysis solution in low-dimensional space.

[1]  Z. Gilula,et al.  Inferential Ordinal Correspondence Analysis: Motivation, Derivation and Limitations , 1990 .

[2]  Anton K. Formann,et al.  Latent class models for nonmonotone dichotomous items , 1988 .

[3]  Patrick J. F. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 2003 .

[4]  R. Clarke,et al.  Theory and Applications of Correspondence Analysis , 1985 .

[5]  M. Greenacre,et al.  Multiple Correspondence Analysis and Related Methods , 2006 .

[6]  A. Cohen,et al.  A new test for stochastic order of k⩾3 ordered multinomial populations , 2006 .

[7]  D. V. Glass,et al.  Social Mobility in Britain. , 1954 .

[8]  Leo A. Goodman,et al.  Some Useful Extensions of the Usual Correspondence Analysis Approach and the Usual Log-Linear Models Approach in the Analysis of Contingency Tables , 1986 .

[9]  Y. Tong Probability Inequalities in Multivariate Distributions , 1980 .

[10]  M. Greenacre,et al.  Correspondence Analysis and Related Methods in Practice , 2006 .

[11]  R. Fisher THE PRECISION OF DISCRIMINANT FUNCTIONS , 1940 .

[12]  E. Lehmann Some Concepts of Dependence , 1966 .

[13]  Y. Ritov,et al.  Analysis of contingency tables by correspondence models subject to order constraints , 1993 .

[14]  B. F. Schriever Scaling of order dependent categorical variables with correspondence analysis : Preprint , 1982 .

[15]  M. Greenacre Correspondence analysis in practice , 1993 .

[16]  Alan Agresti,et al.  Categorical Data Analysis , 1991, International Encyclopedia of Statistical Science.

[17]  K. Maung,et al.  MEASUREMENT OF ASSOCIATION IN A CONTINGENCY TABLE WITH SPECIAL REFERENCE TO THE PIGMENTATION OF HAIR AND EYE COLOURS OF SCOTTISH SCHOOL CHILDREN , 1941 .

[18]  A. D. Gordon,et al.  Correspondence Analysis Handbook. , 1993 .

[19]  Hendrik van Schuur Sructure in political beliefs. A new model for Stochastic Unfolding with Application to European Party Activists , 1984 .

[20]  M. Hill,et al.  Nonlinear Multivariate Analysis. , 1990 .

[21]  Mathematisch Centrum,et al.  Scaling of Order Dependent Categorical Variables with Correspondence Analysis , 1983 .

[22]  G. Kimeldorf,et al.  A framework for positive dependence , 1989, Annals of the Institute of Statistical Mathematics.