Electromagnetic Modeling in the Spectral Domain for Polarimetric Radar Applications: Theoretical Framework

Abstract : A vectorial Fourier-based technique for electromagnetic (EM) wave reconstruction with application to polarimetric airborne and spaceborne radar data exploitation is presented. The approach provides a comprehensive picture of scattering through an electromagnetic-based formulation of equivalent sources and introduction of vector scattering functions. The method is different from conventional modeling techniques for SAR applications as result of the full electromagnetic treatment of field interaction with the scatterer, the possibility of introducing new and controllable feature classes for target classification, and the accurate decomposition of source impulse response function that avoids potential errors (e.g., loss of coherent information) associated with the spherical phase approximations. In addition to including the potential for high quality image formation, the capability of extracting target or scatterer information, such as coherent radar cross section (RCS) is explored. It is highlighted how target image and information processing can be optimized and tailored for a desired scenario (e.g., the required information type, the nature of the targets) by applying the developed model and devising appropriate inversion techniques to aid data processing in support of exploitation.

[1]  L. Kantorovich,et al.  Approximate methods of higher analysis , 1960 .

[2]  Tryphon T. Georgiou,et al.  Spectral analysis based on the state covariance: the maximum entropy spectrum and linear fractional parametrization , 2002, IEEE Trans. Autom. Control..

[3]  J. J. van Zyl,et al.  Imaging radar polarimetry: a review , 1991, Proc. IEEE.

[4]  Eric Pottier,et al.  An entropy based classification scheme for land applications of polarimetric SAR , 1997, IEEE Trans. Geosci. Remote. Sens..

[5]  W. Boerner,et al.  Direct and inverse methods in radar polarimetry , 1992 .

[6]  Eric Pottier,et al.  A review of target decomposition theorems in radar polarimetry , 1996, IEEE Trans. Geosci. Remote. Sens..

[7]  H. Kramer Observation of the Earth and Its Environment , 1994 .

[8]  R. Harrington Matrix methods for field problems , 1967 .

[9]  Mehrdad Soumekh,et al.  Reconnaissance with slant plane circular SAR imaging , 1996, IEEE Trans. Image Process..

[10]  Ridha Touzi,et al.  Characterization of target symmetric scattering using polarimetric SARs , 2002, IEEE Trans. Geosci. Remote. Sens..

[11]  J. Huynen Phenomenological theory of radar targets , 1970 .

[12]  Tryphon T. Georgiou,et al.  Spectral estimation via selective harmonic amplification , 2001, IEEE Trans. Autom. Control..

[13]  R. Elliott Antenna Theory and Design , 2003 .

[14]  Roger F. Harrington,et al.  Field computation by moment methods , 1968 .

[15]  L. A. Cram,et al.  Inverse methods in electromagnetic imaging , 1985 .

[16]  Jakob J. van Zyl,et al.  Calibrated imaging radar polarimetry: technique, examples, and applications , 1991, IEEE Trans. Geosci. Remote. Sens..

[17]  R. Harrington Time-Harmonic Electromagnetic Fields , 1961 .

[18]  J. R. Huynen,et al.  Measurement of the target scattering matrix , 1965 .

[19]  J. Zyl,et al.  Unsupervised classification of scattering behavior using radar polarimetry data , 1989 .

[20]  Kun-mu Chen A mathematical formulation of the equivalence principle , 1989 .

[21]  S. A. Schelkunoff,et al.  Some equivalence theorems of electromagnetics and their application to radiation problems , 1936 .

[22]  William L. Cameron,et al.  Simulated polarimetric signatures of primitive geometrical shapes , 1996, IEEE Trans. Geosci. Remote. Sens..

[23]  E. Krogager New decomposition of the radar target scattering matrix , 1990 .

[24]  C. Balanis Advanced Engineering Electromagnetics , 1989 .

[25]  W. Brown Synthetic Aperture Radar , 1967, IEEE Transactions on Aerospace and Electronic Systems.

[26]  R. Mittra,et al.  Computational Methods for Electromagnetics , 1997 .