Mie scattering used to determine spherical bubble oscillations

Linearly polarized laser light is scattered from an oscillating, acoustically levitated bubble, and the scattered intensity is measured with a suitable photodetector. The output photodetector current is converted into a voltage and digitized. For spherical bubbles, the scattered intensity I(rel)(R,theta,t) as a function of radius R and angle theta is calculated theoretically by solving the boundary value problem (Mie theory) for the water-bubble interface. The inverse transfer function R(I) is obtained by integrating over the photodetector solid angle centered at some constant theta. Using R(I) as a look-up table, the radius vs time [R(t)] response is calculated from the measured intensity vs time [I(exp)(R,t)].

[1]  Andrea Prosperetti,et al.  Nonlinear bubble dynamics , 1988 .

[2]  C. Church,et al.  Prediction of rectified diffusion during nonlinear bubble pulsations at biomedical frequencies. , 1988, The Journal of the Acoustical Society of America.

[3]  W Lauterborn,et al.  KAVITATION DURCH LASERLICHT. , 1974 .

[4]  P L Marston,et al.  Critical-angle scattering of laser light from bubbles in water: measurements, models, and application to sizing of bubbles. , 1984, Applied optics.

[5]  Anthony I. Eller,et al.  Rectified Diffusion during Nonlinear Pulsations of Cavitation Bubbles , 1963 .

[6]  Andrea Prosperetti,et al.  Thermal effects and damping mechanisms in the forced radial oscillations of gas bubbles in liquids , 1977 .

[7]  Andrea Prosperetti,et al.  Nonlinear oscillations of gas bubbles in liquids: An interpretation of some experimental results , 1983 .

[8]  Werner Lauterborn,et al.  Numerical investigation of nonlinear oscillations of gas bubbles in liquids , 1976 .

[9]  Koch,et al.  Holographic observation of period-doubled and chaotic bubble oscillations in acoustic cavitation. , 1987, Physical review. A, General physics.

[10]  W. Lauterborn,et al.  Subharmonic Route to Chaos Observed in Acoustics , 1981 .

[11]  R. Apfel Acoustic cavitation: a possible consequence of biomedical uses of ultrasound. , 1982, The British journal of cancer. Supplement.

[12]  Andrea Prosperetti,et al.  Bubble Dynamics in Oceanic Ambient Noise , 1988 .

[13]  Andrea Prosperetti,et al.  Erratum and Comments on ``Nonlinear oscillations of gas bubbles in liquids: An interpretation of some experimental results'' [J. Acoust. Soc. Am. 73, 121-127 (1983)] , 1984 .

[14]  W. Wiscombe Improved Mie scattering algorithms. , 1980, Applied optics.

[15]  Philip L. Marston,et al.  Critical angle scattering by a bubble: physical-optics approximation and observations , 1979 .

[16]  Robert E. Apfel,et al.  Acoustic cavitation prediction , 1978 .

[17]  W. Lauterborn,et al.  High‐speed holography of laser‐induced breakdown in liquids , 1972 .

[18]  P. Marston Rainbow phenomena and the detection of nonsphericity in drops. , 1980, Applied optics.

[19]  L. Rayleigh VIII. On the pressure developed in a liquid during the collapse of a spherical cavity , 1917 .

[20]  Anthony I. Eller,et al.  Damping Constants of Pulsating Bubbles , 1970 .

[21]  H. G. Flynn Cavitation dynamics. I. A mathematical formulation , 1975 .

[22]  Philip L. Marston,et al.  Scattering by a bubble in water near the critical angle: interference effects: errata , 1981 .

[23]  B. E. Noltingk,et al.  Cavitation Produced by Ultrasonics: Theoretical Conditions for the Onset of Cavitation , 1951 .

[24]  G Haussmann,et al.  Determination of size and position of fast moving gas bubbles in liquids by digital 3-D image processing of hologram reconstructions. , 1980, Applied optics.

[25]  A. Vogel,et al.  Modern Optical Techniques in Fluid Mechanics , 1984 .

[26]  Andrea Prosperetti,et al.  Nonlinear oscillations of gas bubbles in liquids: steady‐state solutions , 1974 .

[27]  A Vogel,et al.  Time-resolved particle image velocimetry used in the investigation of cavitation bubble dynamics. , 1988, Applied optics.

[28]  L. Crum Measurements of the growth of air bubbles by rectified diffusion , 1980 .

[29]  M. Plesset The Dynamics of Cavitation Bubbles , 1949 .

[30]  Joseph B. Keller,et al.  Damping of Underwater Explosion Bubble Oscillations , 1956 .

[31]  A. Prosperetti Viscous effects on perturbed spherical flows , 1977 .

[32]  W. Hentschel,et al.  Recording and automatical analysis of pulsed off-axis holograms for determination of cavitation nuclei size spectra , 1985 .

[33]  R. Hickling Effects of Thermal Conduction in Sonoluminescence , 1963 .

[34]  Gary M. Hansen,et al.  Mie scattering as a technique for the sizing of air bubbles , 1985 .

[35]  Lawrence A. Crum,et al.  The polytropic exponent of gas contained within air bubbles pulsating in a liquid , 1983 .

[36]  Werner Lauterborn,et al.  Cavitation bubble dynamics — new tools for an intricate problem , 1982 .

[37]  Andrea Prosperetti,et al.  Numerical integration methods in gas‐bubble dynamics , 1989 .

[38]  D. Hsieh Some Analytical Aspects of Bubble Dynamics , 1965 .

[39]  J. B. Fowlkes,et al.  Acoustic cavitation generated by microsecond pulses of ultrasound , 1986, Nature.

[40]  Murray Strasberg,et al.  Onset of Ultrasonic Cavitation in Tap Water , 1956 .

[41]  B. E. Noltingk,et al.  Cavitation produced by Ultrasonics , 1950 .

[42]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[43]  Michael J. Miksis,et al.  Bubble Oscillations of Large Amplitude , 1980 .

[44]  Philip L. Marston,et al.  Mie scattering near the critical angle of bubbles in water , 1981 .

[45]  S. A. Thorpe,et al.  Bubbles and breaking waves , 1980, Nature.

[46]  A. Prosperetti,et al.  Linear stability of a growing or collapsing bubble in a slightly viscous liquid , 1978 .

[47]  M. S. Plesset,et al.  On the Stability of Fluid Flows with Spherical Symmetry , 1954 .

[48]  Robert Hickling,et al.  Collapse and rebound of a spherical bubble in water , 1964 .

[49]  Bifurcation Superstructure in a Model of Acoustic Turbulence , 1984 .