Using difference‐based methods for inference in nonparametric regression with time series errors

We show that difference-based methods can be used to construct simple and explicit estimators of error covariance and autoregressive parameters in nonparametric regression with time series errors. When the error process is Gaussian our estimators are efficient, but they are available well beyond the Gaussian case. As an illustration of their usefulness we show that difference-based estimators can be used to produce a simplified version of time series cross-validation. This new approach produces a bandwidth selector that is equivalent, to both first and second orders, to that given by the full time series cross-validation algorithm. Other applications of difference-based methods are to variance estimation and construction of confidence bands in nonparametric regression.

[1]  T. Gasser,et al.  Residual variance and residual pattern in nonlinear regression , 1986 .

[2]  Rob J. Hyndman,et al.  Nonparametric Autocovariance Function Estimation , 1996 .

[3]  J. Marron,et al.  Comparison of Two Bandwidth Selectors with Dependent Errors , 1991 .

[4]  T. Anderson Statistical analysis of time series , 1974 .

[5]  H. Tong,et al.  Cross-validatory bandwidth selections for regression estimation based on dependent data , 1998 .

[6]  J. Hart Kernel regression estimation with time series errors , 1991 .

[7]  J. Rice Bandwidth Choice for Nonparametric Regression , 1984 .

[8]  Yuhong Yang,et al.  Nonparametric Regression with Correlated Errors , 2001 .

[9]  B. Ray,et al.  Bandwidth selection for kernel regression with long-range dependent errors , 1997 .

[10]  P. Hall,et al.  Asymptotically optimal difference-based estimation of variance in nonparametric regression , 1990 .

[11]  T. Gasser,et al.  Choice of bandwidth for kernel regression when residuals are correlated , 1992 .

[12]  Jianqing Fan,et al.  Efficient Estimation of Conditional Variance Functions in Stochastic Regression , 1998 .

[13]  T. Gasser,et al.  Nonparametric estimation of residual variance revisited , 1993 .

[14]  Jeffrey D. Hart,et al.  Automated Kernel Smoothing of Dependent Data by Using Time Series Cross‐Validation , 1994 .

[15]  Elias Masry,et al.  Local linear regression estimation for time series with long-range dependence , 1999 .

[16]  Seongbaek Yi,et al.  One-Sided Cross-Validation , 1998 .

[17]  M. Francisco-Fernández,et al.  LOCAL POLYNOMIAL REGRESSION ESTIMATION WITH CORRELATED ERRORS , 2001 .

[18]  J. Hansen,et al.  Global trends of measured surface air temperature , 1987 .

[19]  Ulrich Stadtmüller,et al.  Detecting dependencies in smooth regression models , 1988 .

[20]  W. Härdle,et al.  A Review of Nonparametric Time Series Analysis , 1997 .

[21]  Elias Masry,et al.  NONPARAMETRIC ESTIMATION OF ADDITIVE NONLINEAR ARX TIME SERIES: LOCAL LINEAR FITTING AND PROJECTIONS , 2000, Econometric Theory.

[22]  Ulrich Stadtmüller,et al.  Estimation of Heteroscedasticity in Regression Analysis , 1987 .

[23]  H. Müller Nonparametric regression analysis of longitudinal data , 1988 .

[24]  Hans-Georg Müller Longitudinal Data and Regression Models , 1988 .

[25]  Quang M. Tieng,et al.  Local linear kernel regression with long-range dependent errors , 1999 .