A counterexample to the Hirsch conjecture

The Hirsch Conjecture (1957) stated that the graph of a d-dimensional polytope with n facets cannot have (combinatorial) diameter greater than n d. That is, any two vertices of the polytope can be connected by a path of at most n d edges. This paper presents the rst counterexample to the conjecture. Our polytope has dimension 43 and 86 facets. It is obtained from a 5-dimensional polytope with 48 facets that violates a certain generalization of the d-step conjecture of Klee and Walkup.

[1]  Michael Joswig,et al.  polymake: a Framework for Analyzing Convex Polytopes , 2000 .

[2]  K. Borgwardt The Simplex Method: A Probabilistic Analysis , 1986 .

[3]  Victor Klee,et al.  The d-Step Conjecture and Its Relatives , 1987, Math. Oper. Res..

[4]  D. Larman Paths on Polytopes , 1970 .

[5]  Victor Klee,et al.  Many Polytopes Meeting the Conjectured Hirsch Bound , 1998, Discret. Comput. Geom..

[6]  Henryk Wozniakowski,et al.  Complexity of linear programming , 1982, Oper. Res. Lett..

[7]  S. Smale,et al.  On a theory of computation and complexity over the real numbers; np-completeness , 1989 .

[8]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[9]  D. Barnette,et al.  Wv paths on 3-polytopes , 1969 .

[10]  G. Kalai,et al.  A quasi-polynomial bound for the diameter of graphs of polyhedra , 1992, math/9204233.

[11]  Micha Hofri,et al.  Probabilistic Analysis of Algorithms , 1987, Texts and Monographs in Computer Science.

[12]  David W. Barnette An upper bound for the diameter of a polytope , 1974, Discret. Math..

[13]  L. Lovász A new linear programming algorithm — better or worse than the Simplex Method? , 1980 .

[14]  Yan-Bin Jia The Simplex Method , 2012 .

[15]  V. Klee Diameters of Polyhedral Graphs , 1964, Canadian Journal of Mathematics.

[16]  Gerd Blind,et al.  The cubicald-polytopes with fewer than 2d+1 vertices , 1995, Discret. Comput. Geom..

[17]  Nimrod Megiddo,et al.  Advances in Economic Theory: On the complexity of linear programming , 1987 .

[18]  Shuzhong Zhang,et al.  Pivot rules for linear programming: A survey on recent theoretical developments , 1993, Ann. Oper. Res..

[19]  Alexander A. Razborov,et al.  Diameter of polyhedra: limits of abstraction , 2009, SCG '09.

[20]  Gil Kalai,et al.  A subexponential randomized simplex algorithm (extended abstract) , 1992, STOC '92.

[21]  V. Klee Paths on polyhedra. II. , 1964 .

[22]  Tamon Stephen,et al.  Embedding a Pair of Graphs in a Surface, and the Width of 4-dimensional Prismatoids , 2012, Discret. Comput. Geom..

[23]  Branko Grünbaum Diameters of Polytopes , 2003 .

[24]  T. Bewley Advances in Economic Theory: Fifth World Congress , 2009 .

[25]  L. G. H. Cijan A polynomial algorithm in linear programming , 1979 .

[26]  D. Barnette A proof of the lower bound conjecture for convex polytopes. , 1973 .

[27]  Francisco Santos,et al.  Companion to \An update on the Hirsch conjecture" , 2009, 0912.4235.

[28]  C. C. Gonzaga On the Complexity of Linear Programming , 1995 .

[29]  G. C. Shephard,et al.  Convex Polytopes , 1967 .

[30]  Eugene L. Lawler,et al.  The great mathematical Sputnik of 1979 , 1980 .

[31]  J. D. Loera,et al.  Triangulations: Structures for Algorithms and Applications , 2010 .

[32]  Micha Sharir,et al.  A Subexponential Bound for Linear Programming , 1992, Symposium on Computational Geometry.

[33]  V. Klee,et al.  Thed-step conjecture for polyhedra of dimensiond<6 , 1967 .

[34]  Michael J. Todd,et al.  The Monotonic Bounded Hirsch Conjecture is False for Dimension at Least 4 , 1980, Math. Oper. Res..

[35]  Uri Zwick,et al.  Subexponential lower bounds for randomized pivoting rules for the simplex algorithm , 2011, STOC '11.

[36]  Jack J. Dongarra,et al.  Guest Editors Introduction to the top 10 algorithms , 2000, Comput. Sci. Eng..

[37]  S. Smale,et al.  On a theory of computation and complexity over the real numbers; np-completeness , 1989 .

[38]  Shang-Hua Teng,et al.  Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time , 2001, STOC '01.

[39]  Karl-Heinz Borgwardt,et al.  The Average number of pivot steps required by the Simplex-Method is polynomial , 1982, Z. Oper. Research.

[40]  V. Klee On the Number of Vertices of a Convex Polytope , 1964, Canadian Journal of Mathematics.

[41]  J. Scott Provan,et al.  Decompositions of Simplicial Complexes Related to Diameters of Convex Polyhedra , 1980, Math. Oper. Res..

[42]  Oliver Friedmann,et al.  A Subexponential Lower Bound for Zadeh's Pivoting Rule for Solving Linear Programs and Games , 2011, IPCO.

[43]  O. H. Brownlee,et al.  ACTIVITY ANALYSIS OF PRODUCTION AND ALLOCATION , 1952 .

[44]  G. Ziegler Lectures on Polytopes , 1994 .

[45]  Stephen Smale,et al.  On the average number of steps of the simplex method of linear programming , 1983, Math. Program..

[46]  Michael J. Todd,et al.  Book Review: The basic George B. Dantzig , 2011 .

[47]  S. Smale Mathematical problems for the next century , 1998 .

[48]  V. Klee,et al.  HOW GOOD IS THE SIMPLEX ALGORITHM , 1970 .

[49]  L. Khachiyan Polynomial algorithms in linear programming , 1980 .

[50]  Peter Kleinschmidt,et al.  On the diameter of convex polytopes , 1992, Discret. Math..

[51]  Nimrod Megiddo,et al.  Linear Programming in Linear Time When the Dimension Is Fixed , 1984, JACM.

[52]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[53]  Dan Halperin,et al.  On the Exact Maximum Complexity of Minkowski Sums of Polytopes , 2009, Discret. Comput. Geom..

[54]  V. Klee,et al.  Mathematical Programming and Convex Geometry , 1993 .

[55]  David Bremner,et al.  Edge-Graph Diameter Bounds for Convex Polytopes with Few Facets , 2008, Exp. Math..

[56]  Edward D. Kim,et al.  An Update on the Hirsch Conjecture , 2009, 0907.1186.

[57]  Günter M. Ziegler,et al.  Neighborly Cubical Polytopes , 2000, Discret. Comput. Geom..

[58]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.