Coupling atomistic and continuum hydrodynamics through a mesoscopic model: application to liquid water.

We have conducted a triple-scale simulation of liquid water by concurrently coupling atomistic, mesoscopic, and continuum models of the liquid. The presented triple-scale hydrodynamic solver for molecular liquids enables the insertion of large molecules into the atomistic domain through a mesoscopic region. We show that the triple-scale scheme is robust against the details of the mesoscopic model owing to the conservation of linear momentum by the adaptive resolution forces. Our multiscale approach is designed for molecular simulations of open domains with relatively large molecules, either in the grand canonical ensemble or under nonequilibrium conditions.

[1]  Matej Praprotnik,et al.  Adaptive molecular resolution via a continuous change of the phase space dimensionality. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Gianni De Fabritiis,et al.  Energy controlled insertion of polar molecules in dense fluids. , 2004, The Journal of chemical physics.

[3]  G De Fabritiis,et al.  Embedding molecular dynamics within fluctuating hydrodynamics in multiscale simulations of liquids. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Rafael Delgado-Buscalioni,et al.  Flux boundary conditions in particle simulations. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Matej Praprotnik,et al.  Multiscale simulation of soft matter: from scale bridging to adaptive resolution. , 2008, Annual review of physical chemistry.

[6]  Martin Neumann,et al.  Dipole moment fluctuation formulas in computer simulations of polar systems , 1983 .

[7]  P. Koumoutsakos MULTISCALE FLOW SIMULATIONS USING PARTICLES , 2005 .

[8]  Matej Praprotnik,et al.  Adaptive resolution scheme for efficient hybrid atomistic-mesoscale molecular dynamics simulations of dense liquids. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Dirk Reith,et al.  Deriving effective mesoscale potentials from atomistic simulations , 2002, J. Comput. Chem..

[10]  D. Janežič,et al.  Molecular dynamics integration and molecular vibrational theory. III. The infrared spectrum of water. , 2005, The Journal of chemical physics.

[11]  E. Vanden-Eijnden,et al.  Mori-Zwanzig formalism as a practical computational tool. , 2010, Faraday discussions.

[12]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[13]  Aleksandar Donev,et al.  Stochastic hard-sphere dynamics for hydrodynamics of nonideal fluids. , 2008, Physical review letters.

[14]  J. Q. Broughton,et al.  Concurrent coupling of length scales: Methodology and application , 1999 .

[15]  Matej Praprotnik,et al.  FAST TRACK COMMUNICATION: Fractional dimensions of phase space variables: a tool for varying the degrees of freedom of a system in a multiscale treatment , 2007 .

[16]  Reinier L. C. Akkermans,et al.  Representation of Coarse-grained Potentials for Polymer Simulations , 2002 .

[17]  Matej Praprotnik,et al.  Concurrent triple-scale simulation of molecular liquids. , 2008, The Journal of chemical physics.

[18]  Petros Koumoutsakos,et al.  Control algorithm for multiscale flow simulations of water. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  M. Karplus,et al.  Simulation of activation free energies in molecular systems , 1996 .

[20]  K. Kremer,et al.  Dissipative particle dynamics: a useful thermostat for equilibrium and nonequilibrium molecular dynamics simulations. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[22]  P. Coveney,et al.  Fluctuating hydrodynamic modeling of fluids at the nanoscale. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  G De Fabritiis,et al.  Multiscale modeling of liquids with molecular specificity. , 2006, Physical review letters.

[24]  George E. Karniadakis,et al.  Triple-decker: Interfacing atomistic-mesoscopic-continuum flow regimes , 2009, J. Comput. Phys..

[25]  Dusanka Janezic,et al.  Molecular dynamics integration and molecular vibrational theory. I. New symplectic integrators. , 2005, Journal of Chemical Physics.

[26]  Kurt Kremer,et al.  Simulation of Polymer Melts. II. From Coarse-Grained Models Back to Atomistic Description , 1998 .

[27]  Matej Praprotnik,et al.  Transport properties controlled by a thermostat: An extended dissipative particle dynamics thermostat. , 2007, Soft matter.

[28]  Cracks and crazes: on calculating the macroscopic fracture energy of glassy polymers from molecular simulations. , 2001, Physical review letters.

[29]  Berend Smit,et al.  Molecular Dynamics Simulations , 2002 .

[30]  Kurt Kremer,et al.  Simulation of polymer melts. I. Coarse‐graining procedure for polycarbonates , 1998 .

[31]  Fernando Bresme,et al.  Anomalous dielectric behavior of water in ionic newton black films. , 2004, Physical review letters.

[32]  P. V. Coveney,et al.  USHER: An algorithm for particle insertion in dense fluids , 2003 .

[33]  Matej Praprotnik,et al.  Modeling diffusive dynamics in adaptive resolution simulation of liquid water. , 2007, The Journal of chemical physics.

[34]  L.Delle Site,et al.  Some fundamental problems for an energy-conserving adaptive-resolution molecular dynamics scheme. , 2007, 0709.2579.

[35]  A. Malevanets,et al.  Solute molecular dynamics in a mesoscale solvent , 2000 .

[36]  Bernard Pettitt,et al.  Grand canonical ensemble molecular dynamics simulations: Reformulation of extended system dynamics approaches , 1997 .

[37]  K. Kremer,et al.  Adaptive resolution molecular-dynamics simulation: changing the degrees of freedom on the fly. , 2005, The Journal of chemical physics.