i-cisTarget 2015 update: generalized cis-regulatory enrichment analysis in human, mouse and fly

i-cisTarget is a web tool to predict regulators of a set of genomic regions, such as ChIP-seq peaks or co-regulated/similar enhancers. i-cisTarget can also be used to identify upstream regulators and their target enhancers starting from a set of co-expressed genes. Whereas the original version of i-cisTarget was focused on Drosophila data, the 2015 update also provides support for human and mouse data. i-cisTarget detects transcription factor motifs (position weight matrices) and experimental data tracks (e.g. from ENCODE, Roadmap Epigenomics) that are enriched in the input set of regions. As experimental data tracks we include transcription factor ChIP-seq data, histone modification ChIP-seq data and open chromatin data. The underlying processing method is based on a ranking-and-recovery procedure, allowing accurate determination of enrichment across heterogeneous datasets, while also discriminating direct from indirect target regions through a ‘leading edge’ analysis. We illustrate i-cisTarget on various Ewing sarcoma datasets to identify EWS-FLI1 targets starting from ChIP-seq, differential ATAC-seq, differential H3K27ac and differential gene expression data. Use of i-cisTarget is free and open to all, and there is no login requirement. Address: http://gbiomed.kuleuven.be/apps/lcb/i-cisTarget.

[1]  A. Visel,et al.  Homotypic clusters of transcription factor binding sites are a key component of human promoters and enhancers. , 2010, Genome research.

[2]  Martin C. Frith,et al.  Cluster-Buster: finding dense clusters of motifs in DNA sequences , 2003, Nucleic Acids Res..

[3]  Valer Gotea,et al.  DiRE: identifying distant regulatory elements of co-expressed genes , 2008, Nucleic Acids Res..

[4]  Philipp Bucher,et al.  UCNEbase—a database of ultraconserved non-coding elements and genomic regulatory blocks , 2012, Nucleic Acids Res..

[5]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[6]  Shawn M. Gillespie,et al.  EWS-FLI1 utilizes divergent chromatin remodeling mechanisms to directly activate or repress enhancer elements in Ewing sarcoma. , 2014, Cancer cell.

[7]  J. van Helden,et al.  RSAT peak-motifs: motif analysis in full-size ChIP-seq datasets , 2011, Nucleic acids research.

[8]  William Stafford Noble,et al.  Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors , 2012, Genome research.

[9]  Bin Chen,et al.  Relating genes to function: identifying enriched transcription factors using the ENCODE ChIP-Seq significance tool , 2013, Bioinform..

[10]  David J. Arenillas,et al.  oPOSSUM-3: Advanced Analysis of Regulatory Motif Over-Representation Across Genes or ChIP-Seq Datasets , 2012, G3: Genes | Genomes | Genetics.

[11]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[12]  Obi L. Griffith,et al.  ORegAnno: an open access database and curation system for literature-derived promoters, transcription factor binding sites and regulatory variation , 2006, Bioinform..

[13]  Aaron R. Quinlan,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2022 .

[14]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[15]  Jason B. Ernst,et al.  Integrating multiple evidence sources to predict transcription factor binding in the human genome. , 2010, Genome research.

[16]  Cole Trapnell,et al.  TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions , 2013, Genome Biology.

[17]  Trey Ideker,et al.  Cytoscape 2.8: new features for data integration and network visualization , 2010, Bioinform..

[18]  Mathieu Blanchette,et al.  PReMod: a database of genome-wide mammalian cis-regulatory module predictions , 2006, Nucleic Acids Res..

[19]  Cory Y. McLean,et al.  GREAT improves functional interpretation of cis-regulatory regions , 2010, Nature Biotechnology.

[20]  Martin Kuiper,et al.  BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in Biological Networks , 2005, Bioinform..

[21]  Mary Goldman,et al.  The UCSC Genome Browser database: extensions and updates 2013 , 2012, Nucleic Acids Res..

[22]  S. Aerts,et al.  i-cisTarget: an integrative genomics method for the prediction of regulatory features and cis-regulatory modules , 2012, Nucleic acids research.

[23]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[24]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[25]  Philip Cayting,et al.  An encyclopedia of mouse DNA elements (Mouse ENCODE) , 2012, Genome Biology.

[26]  C. Glass,et al.  Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. , 2010, Molecular cell.

[27]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[28]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[29]  Israel Steinfeld,et al.  BMC Bioinformatics BioMed Central , 2008 .

[30]  Mary Goldman,et al.  The UCSC Genome Browser database: extensions and updates 2011 , 2011, Nucleic Acids Res..

[31]  Terrence S. Furey,et al.  The UCSC Table Browser data retrieval tool , 2004, Nucleic Acids Res..

[32]  Joshua M. Stuart,et al.  A Gene-Coexpression Network for Global Discovery of Conserved Genetic Modules , 2003, Science.

[33]  Helga Thorvaldsdóttir,et al.  Molecular signatures database (MSigDB) 3.0 , 2011, Bioinform..

[34]  Panayiotis V. Benos,et al.  DNA Familial Binding Profiles Made Easy: Comparison of Various Motif Alignment and Clustering Strategies , 2007, PLoS Comput. Biol..

[35]  Thomas Whitington,et al.  Transcription Factor Binding in Human Cells Occurs in Dense Clusters Formed around Cohesin Anchor Sites , 2013, Cell.

[36]  Alan M. Moses,et al.  In vivo enhancer analysis of human conserved non-coding sequences , 2006, Nature.

[37]  P. Åman,et al.  Fusion genes in solid tumors. , 1999, Seminars in cancer biology.

[38]  ENCODEConsortium,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[39]  Stein Aerts,et al.  iRegulon: From a Gene List to a Gene Regulatory Network Using Large Motif and Track Collections , 2014, PLoS Comput. Biol..

[40]  Bassem A. Hassan,et al.  Gene prioritization through genomic data fusion , 2006, Nature Biotechnology.

[41]  Philip Machanick,et al.  MEME-ChIP: motif analysis of large DNA datasets , 2011, Bioinform..

[42]  David J. Arenillas,et al.  JASPAR 2010: the greatly expanded open-access database of transcription factor binding profiles , 2009, Nucleic Acids Res..

[43]  Clifford A. Meyer,et al.  Cistrome: an integrative platform for transcriptional regulation studies , 2011, Genome Biology.

[44]  S. Aerts,et al.  Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state , 2015, Nature Communications.