Longitudinal Image Registration With Temporally-Dependent Image Similarity Measure

Longitudinal imaging studies are frequently used to investigate temporal changes in brain morphology and often require spatial correspondence between images achieved through image registration. Beside morphological changes, image intensity may also change over time, for example when studying brain maturation. However, such intensity changes are not accounted for in image similarity measures for standard image registration methods. Hence, 1) local similarity measures, 2) methods estimating intensity transformations between images, and 3) metamorphosis approaches have been developed to either achieve robustness with respect to intensity changes or to simultaneously capture spatial and intensity changes. For these methods, longitudinal intensity changes are not explicitly modeled and images are treated as independent static samples. Here, we propose a model-based image similarity measure for longitudinal image registration that estimates a temporal model of intensity change using all available images simultaneously.

[1]  Guido Gerig,et al.  Spatiotemporal Atlas Estimation for Developmental Delay Detection in Longitudinal Datasets , 2009, MICCAI.

[2]  Dinggang Shen,et al.  Neonatal brain image segmentation in longitudinal MRI studies , 2010, NeuroImage.

[3]  Karl J. Friston,et al.  Spatial registration and normalization of images , 1995 .

[4]  B. J. Casey,et al.  Imaging the developing brain: what have we learned about cognitive development? , 2005, Trends in Cognitive Sciences.

[5]  Daniel Rueckert,et al.  Longitudinal Cortical Registration for Developing Neonates , 2007, MICCAI.

[6]  Daniel Rueckert,et al.  LISA: Longitudinal image registration via spatio-temporal atlases , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[7]  Martin Styner,et al.  Automatic regional analysis of DTI properties in the developmental macaque brain , 2008, SPIE Medical Imaging.

[8]  Bruce Fischl,et al.  Within-subject template estimation for unbiased longitudinal image analysis , 2012, NeuroImage.

[9]  D. Fekedulegn,et al.  Parameter estimation of nonlinear growth models in forestry , 1999 .

[10]  Chris Rorden,et al.  Spatial Normalization of Brain Images with Focal Lesions Using Cost Function Masking , 2001, NeuroImage.

[11]  Dinggang Shen,et al.  CLASSIC: Consistent Longitudinal Alignment and Segmentation for Serial Image Computing , 2006, NeuroImage.

[12]  Daniel Rueckert,et al.  Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression , 2012, NeuroImage.

[13]  Michael I. Miller,et al.  Group Actions, Homeomorphisms, and Matching: A General Framework , 2004, International Journal of Computer Vision.

[14]  H. Kinney,et al.  Myelination in the developing human brain: Biochemical correlates , 1994, Neurochemical Research.

[15]  Dinggang Shen,et al.  Registration of longitudinal brain image sequences with implicit template and spatial–temporal heuristics , 2012, NeuroImage.

[16]  C. Broit Optimal registration of deformed images , 1981 .

[17]  Colin Studholme,et al.  Deformation-based mapping of volume change from serial brain MRI in the presence of local tissue contrast change , 2006, IEEE Transactions on Medical Imaging.

[18]  J. Dobbing,et al.  Quantitative growth and development of human brain , 1973, Archives of disease in childhood.

[19]  Guido Gerig,et al.  Estimation of Smooth Growth Trajectories with Controlled Acceleration from Time Series Shape Data , 2011, MICCAI.

[20]  Paul Suetens,et al.  Nonrigid Image Registration Using Conditional Mutual Information , 2007, IPMI.

[21]  Rebecca C. Knickmeyer,et al.  A Structural MRI Study of Human Brain Development from Birth to 2 Years , 2008, The Journal of Neuroscience.

[22]  Jan Modersitzky,et al.  FAIR - Flexible Algorithms for Image Registration , 2009, Fundamentals of algorithms.

[23]  Hany Farid,et al.  Elastic registration in the presence of intensity variations , 2003, IEEE Transactions on Medical Imaging.

[24]  D. Norman,et al.  Normal maturation of the neonatal and infant brain: MR imaging at 1.5 T. , 1988, Radiology.

[25]  John H. Gilmore,et al.  Efficient Probabilistic and Geometric Anatomical Mapping Using Particle Mesh Approximation on GPUs , 2011, Int. J. Biomed. Imaging.

[26]  Martin Styner,et al.  Longitudinal Image Registration with Non-uniform Appearance Change , 2012, MICCAI.

[27]  Dinggang Shen,et al.  Measuring temporal morphological changes robustly in brain MR images via 4-dimensional template warping , 2004, NeuroImage.

[28]  Laurent Risser,et al.  Motion Correction and Parameter Estimation in dceMRI Sequences: Application to Colorectal Cancer , 2011, MICCAI.

[29]  Nicholas Ayache,et al.  Multimodal Elastic Matching of Brain Images , 2000, ECCV.

[30]  Martin Styner,et al.  Temporally-Dependent Image Similarity Measure for Longitudinal Analysis , 2012, WBIR.

[31]  Nikos Paragios,et al.  DRAMMS: Deformable Registration via Attribute Matching and Mutual-Saliency Weighting , 2009, IPMI.