Indecomposable linear Orderings and Hyperarithmetic Analysis
暂无分享,去创建一个
[1] Jeffry L. Hirst. Reverse Mathematics and Ordinal Exponentiation , 1994, Ann. Pure Appl. Log..
[2] Julia A. Knight,et al. Computable structures and the hyperarithmetical hierarchy , 2000 .
[3] S. Kleene. Hierarchies of number-theoretic predicates , 1955 .
[4] Christopher J. Ash,et al. Jumps of orderings , 1990 .
[5] S. C. Kleene,et al. Quantification of number-theoretic functions , 1960 .
[6] Jon Barwise,et al. On recursively saturated models of arithmetic , 1975 .
[7] John R. Steel,et al. Forcing with tagged trees , 1978 .
[8] Carl G. Jockusch,et al. On the strength of Ramsey's theorem for pairs , 2001, Journal of Symbolic Logic.
[9] Antonio Montalbán,et al. Equivalence between Fraïssé's conjecture and Jullien's theorem , 2006, Ann. Pure Appl. Log..
[10] Christopher J. Ash. A Construction for Recursive Linear Orderings , 1991, J. Symb. Log..
[11] Antonio Montalbán,et al. Up to equimorphism, hyperarithmetic is recursive , 2005, Journal of Symbolic Logic.
[12] Clifford Spector,et al. Recursive well-orderings , 1955, Journal of Symbolic Logic.
[13] Joseph Harrison,et al. Recursive pseudo-well-orderings , 1968 .
[14] Christopher J. Ash. Stability of recursive structures in arithmetical degrees , 1986, Ann. Pure Appl. Log..
[15] Richard A. Shore,et al. On the strength of Fraïssé’s conjecture , 1993 .
[16] Richard Laver,et al. On Fraisse's order type conjecture , 1971 .
[17] Richard A. Shore. Invariants, Boolean algebras and ACA$_{0}^{+}$ , 2005 .