Digestive Ripening, Nanophase Segregation and Superlattice Formation in Gold Nanocrystal Colloids

A novel digestive ripening process is shown to narrow the particle size distribution from a highly polydisperse dodecanethiol ligated gold colloid. Unlike the Ostwald ripening process, the digestion occurs through transferring materials from large particles to small particles. Temperature-induced size segregation can further select the particle sizes. By using these two methods, highly ordered superlattices using nanocrystals as building blocks can be synthesized directly from a polydisperse colloid.

[1]  V K LA MER,et al.  The determination of the particle size of monodispersed systems by the scattering of light. , 1947, Journal of the American Chemical Society.

[2]  H. Weller SELF-ORGANIZED SUPERLATTICES OF NANOPARTICLES , 1996 .

[3]  U. Landman,et al.  Structure, dynamics, and thermodynamics of passivated gold nanocrystallites and their assemblies , 1996 .

[4]  R. Nuzzo,et al.  Synthesis, Structure, and Properties of Model Organic Surfaces , 1992 .

[5]  C. Sorensen,et al.  Formation and Dissolution of Gold Nanocrystal Superlattices in a Colloidal Solution , 1999 .

[6]  U. Kreibig,et al.  OPTICAL ABSORPTION OF SMALL METALLIC PARTICLES , 1985 .

[7]  R. P. Andres,et al.  Self-Assembly of a Two-Dimensional Superlattice of Molecularly Linked Metal Clusters , 1996, Science.

[8]  E. Matijević Monodispersed colloids: art and science , 1986 .

[9]  T. Tadros Solid/liquid dispersions , 1987 .

[10]  C. Sorensen,et al.  Ligand-Induced Gold Nanocrystal Superlattice Formation in Colloidal Solution , 1999 .

[11]  B. Korgel,et al.  CONDENSATION OF ORDERED NANOCRYSTAL THIN FILMS , 1998 .

[12]  G. Frens,et al.  Particle size and sol stability in metal colloids , 1972 .

[13]  A. Arora,et al.  Applications of colloids in studies of phase transitions and patterning of surfaces , 1997 .

[14]  Heath,et al.  Crystallization of opals from polydisperse nanoparticles. , 1995, Physical review letters.

[15]  Zhong Lin Wang,et al.  Superlattices of Self‐Assembled Tetrahedral Ag Nanocrystals , 1998 .

[16]  Peter W. Stephens,et al.  Nanocrystal gold molecules , 1996 .

[17]  M. Pileni,et al.  Reverse micelles as microreactors , 1993 .

[18]  J. Fendler Nanoparticles at air/water interfaces , 1996 .

[19]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[20]  L. Motte,et al.  Self-Assembled Monolayer of Nanosized Particles Differing by Their Sizes , 1995 .

[21]  Robert L. Whetten,et al.  Isolation and Selected Properties of a 10.4 kDa Gold:Glutathione Cluster Compound , 1998 .

[22]  L. Motte,et al.  Self-Organization into 2D and 3D Superlattices of Nanosized Particles Differing by Their Size , 1997 .

[23]  T. Sugimoto Preparation of monodispersed colloidal particles , 1987 .

[24]  G. Schmid Clusters and Colloids , 1994 .

[25]  M. Brust,et al.  Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters , 1998, Nature.

[26]  Cherie R. Kagan,et al.  Self-Organization of CdSe Nanocrystallites into Three-Dimensional Quantum Dot Superlattices , 1995, Science.

[27]  Xiaogang Peng,et al.  Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth: “Focusing” of Size Distributions , 1998 .

[28]  A. Ulman,et al.  Structure and binding of alkanethiolates on gold and silver surfaces: implications for self-assembled monolayers , 1993 .