Algorithmes parallèles efficaces pour le calcul formel : algèbre linéaire creuse et extensions algébriques. (Efficient parallel algorithm for computer algebra : sparce linear algebra and algebraic extensions)
暂无分享,去创建一个
[1] J. G. Lewis,et al. A Shifted Block Lanczos Algorithm for Solving Sparse Symmetric Generalized Eigenproblems , 1994, SIAM J. Matrix Anal. Appl..
[2] F. R. Gantmakher. The Theory of Matrices , 1984 .
[3] Gilles Villard,et al. Further analysis of Coppersmith's block Wiedemann algorithm for the solution of sparse linear systems (extended abstract) , 1997, ISSAC.
[4] Erich Kaltofen,et al. Challenges of Symbolic Computation: My Favorite Open Problems , 2000, J. Symb. Comput..
[5] Jean-Guillaume Dumas,et al. On Efficient Sparse Integer Matrix Smith Normal Form Computations , 2001, J. Symb. Comput..
[6] Bruce Hendrickson,et al. Improving the Run Time and Quality of Nested Dissection Ordering , 1998, SIAM J. Sci. Comput..
[7] J. Faugère. A new efficient algorithm for computing Gröbner bases (F4) , 1999 .
[8] O. Penninga,et al. Finding column dependencies in sparse matrices over F2 by block Wiedemann , 1998 .
[9] Erich Kaltofen,et al. Fast polynomial factorization over high algebraic extensions of finite fields , 1997, ISSAC.
[10] Jacques Briat,et al. Athapascan Runtime: Efficiency for Irregular Problems , 1997, Euro-Par.
[11] E. Berlekamp. Factoring polynomials over large finite fields* , 1970, SYMSAC '71.
[12] Jeremy Teitelbaum,et al. Euclid's algorithm and the Lanczos method over finite fields , 1998, Math. Comput..
[13] Jean-Guillaume Dumas,et al. Integer Smith form via the valence: experience with large sparse matrices from homology , 2000, ISSAC.
[14] I. Blake,et al. Computational aspects of discrete logarithms , 1996 .
[15] Richard Zippel,et al. Effective polynomial computation , 1993, The Kluwer international series in engineering and computer science.
[16] J. Gillis,et al. Matrix Iterative Analysis , 1961 .
[17] Erich Kaltofen,et al. On Wiedemann's Method of Solving Sparse Linear Systems , 1991, AAECC.
[18] Victor J. Rayward-Smith. On Computing the Smith Normal Form of an Integer Matrix , 1979, TOMS.
[19] Raymond Namyst. Pm2 : un environnement pour une conception portable et une exécution efficace des applications parallèles irrégulières , 1997 .
[20] Erich Kaltofen,et al. Early termination in Ben-Or/Tiwari sparse interpolation and a hybrid of Zippel's algorithm , 2000, ISSAC.
[21] G. Villard. Computing the Frobenius Normal Form of a Sparse Matrix , 2000 .
[22] H. Simon. The Lanczos algorithm with partial reorthogonalization , 1984 .
[23] A. Turing. ROUNDING-OFF ERRORS IN MATRIX PROCESSES , 1948 .
[24] Corporate The MPI Forum,et al. MPI: a message passing interface , 1993, Supercomputing '93.
[25] H. W. Lenstra,et al. Factoring integers with elliptic curves , 1987 .
[26] Bruce W. Char,et al. First Leaves: A Tutorial Introduction to Maple V , 1992 .
[27] Thierry Gautier. Calcul formel et parallélisme : conception du système GIVARO et applications au calcul dans les extensions algébriques , 1996 .
[28] Wolfgang W. Küchlin. Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation : ISSAC 97, July 21-23, 1997, Maui, Hawaii , 1997 .
[29] E. Bareiss. Sylvester’s identity and multistep integer-preserving Gaussian elimination , 1968 .
[30] Jean Louis Dornstetter. On the equivalence between Berlekamp's and Euclid's algorithms , 1987, IEEE Trans. Inf. Theory.
[31] P. Berman,et al. On the performance of the minimum degree ordering for Gaussian elimination , 1990 .
[32] Victor Y. Pan,et al. Processor-efficient parallel solution of linear systems. II. The positive characteristic and singular cases , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.
[33] Jack Dongarra,et al. An Introduction to the MPI Standard , 1995 .
[34] J. Friedman,et al. Computing Betti Numbers via Combinatorial Laplacians , 1996, STOC '96.
[35] Oscar H. Ibarra,et al. A Generalization of the Fast LUP Matrix Decomposition Algorithm and Applications , 1982, J. Algorithms.
[36] V. Strassen. Gaussian elimination is not optimal , 1969 .
[37] Pierre Dusart. Autour de la fonction qui compte le nombre de nombres premiers , 1998 .
[38] Bradley C. Kuszmaul,et al. Cilk: an efficient multithreaded runtime system , 1995, PPOPP '95.
[39] Stefania Cavallar,et al. Strategies in Filtering in the Number Field Sieve , 2000, ANTS.
[40] I. Duff,et al. Direct Methods for Sparse Matrices , 1987 .
[41] Leo Murata. On the magnitude of the least prime primitive root , 1991 .
[42] Don Coppersmith,et al. Fast evaluation of logarithms in fields of characteristic two , 1984, IEEE Trans. Inf. Theory.
[43] M. Yannakakis. Computing the Minimum Fill-in is NP^Complete , 1981 .
[44] L. Dagum,et al. OpenMP: an industry standard API for shared-memory programming , 1998 .
[45] V. L. Kurakin. The first coordinate sequence of a linear recurrence of maximal period over a Galois ring , 1994 .
[46] Svante Linusson,et al. COMPLEXES OF NOT i-CONNECTED GRAPHS , 1997, math/9705219.
[47] Forum Mpi. MPI: A Message-Passing Interface , 1994 .
[48] Friedhelm Meyer auf der Heide,et al. Efficient PRAM simulation on a distributed memory machine , 1992, STOC '92.
[49] Douglas H. Wiedemann. Solving sparse linear equations over finite fields , 1986, IEEE Trans. Inf. Theory.
[50] George E. Collins,et al. Algorithms for the Solution of Systems of Linear Diophantine Equations , 1982, SIAM J. Comput..
[51] Graham H. Norton,et al. On Minimal Realization Over a Finite Chain Ring , 1999, Des. Codes Cryptogr..
[52] Paul Jackson,et al. Finite Field Arithmetic Using the Connection Machine , 1990, CAP.
[53] M. Mignotte,et al. Mathématiques pour le calcul formel , 1989 .
[54] George Karypis,et al. Introduction to Parallel Computing , 1994 .
[55] Erich Kaltofen,et al. On randomized Lanczos algorithms , 1997, ISSAC.
[56] Mathias Doreille,et al. Athapascan-1 : vers un modèle de programmation parallèle adapté au calcul scientifique. (Athapascan-1 : towards a parallel programming model adapted to the scientific computation) , 1999 .
[57] S. Eisenstat,et al. Node Selection Strategies for Bottom-Up Sparse Matrix Ordering , 1998, SIAM J. Matrix Anal. Appl..
[58] Joachim von zur Gathen,et al. Modern Computer Algebra , 1998 .
[59] Gilles Villard,et al. Fast Parallel Algorithms for Matrix Reduction to Normal Forms , 1997, Applicable Algebra in Engineering, Communication and Computing.
[60] Mark Giesbrecht,et al. Probabilistic Computation of the Smith Normal Form of a Sparse Integer Matrix , 1996, ANTS.
[61] Underwood Dudley. Elementary Number Theory , 1978 .
[62] Keith O. Geddes,et al. Maple V Programming Guide , 1996 .
[63] Zhishun A. Liu,et al. A Look Ahead Lanczos Algorithm for Unsymmetric Matrices , 1985 .
[64] Andrew M. Odlyzko,et al. Solving Large Sparse Linear Systems over Finite Fields , 1990, CRYPTO.
[65] D. Laksov,et al. Counting Matrices with Coordinates in Finite Fields and of Fixed Rank. , 1994 .
[66] Graham H. Norton,et al. Linear recurrence relations and an extended subresultant algorithm , 1988, Coding Theory and Applications.
[67] Jean-Louis Roch,et al. Parallel computer algebra (tutorial) , 1997, ISSAC 1997.
[68] Rice UniversityCORPORATE,et al. High performance Fortran language specification , 1993 .
[69] Patrick R. Amestoy,et al. Hybridizing nested dissection and halo approximate minimum degree for efficient sparse matrix ordering , 2000 .
[70] J. Pollard. A monte carlo method for factorization , 1975 .
[71] Vipin Kumar,et al. A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..
[72] Victor Shoup,et al. Fast construction of irreducible polynomials over finite fields , 1994, SODA '93.
[73] David Gelernter,et al. Generative communication in Linda , 1985, TOPL.
[74] A. Street,et al. Combinatorics: room squares, sum-free sets, Hadamard matrices , 1972 .
[75] D. Cantor,et al. A new algorithm for factoring polynomials over finite fields , 1981 .
[76] G. Miller. Linear Groups with an Exposition of the Galois Field Theory , 1902 .
[77] Jack J. Dongarra,et al. A proposal for a set of level 3 basic linear algebra subprograms , 1987, SGNM.
[78] D. Coppersmith. Solving linear equations over GF(2): block Lanczos algorithm , 1993 .
[79] Z. Zlatev. Computational Methods for General Sparse Matrices , 1991 .
[80] François Galilée. Athapascan-1 : interprétation distribuée du flot de données d'un programme parallèle. (Athapascan-1 : distributed interpretation of parallel programs based on data flow analysis) , 1999 .
[81] J. Cocteau. Les mariés de la Tour Eiffel , 1924 .
[82] Monica S. Lam,et al. The design, implementation, and evaluation of Jade , 1998, TOPL.
[83] Andrew M. Odlyzko,et al. Discrete Logarithms: The Past and the Future , 2000, Des. Codes Cryptogr..
[84] G. Villard. A study of Coppersmith's block Wiedemann algorithm using matrix polynomials , 1997 .
[85] Peter L. Montgomery,et al. A Block Lanczos Algorithm for Finding Dependencies Over GF(2) , 1995, EUROCRYPT.
[86] James R. Munkres,et al. Elements of algebraic topology , 1984 .
[87] Stephen Wolfram,et al. The Mathematica Book , 1996 .
[88] Victor Reiner,et al. Minimal Resolutions and the Homology of Matching and Chessboard Complexes , 2000 .
[89] Erich Kaltofen,et al. Distributed Matrix-Free Solution of Large Sparse Linear Systems over Finite Fields , 1999, Algorithmica.
[90] Graham H. Norton,et al. On the Minimal Realizations of a Finite Sequence , 1995, J. Symb. Comput..
[91] A. Brauer. Limits for the characteristic roots of a matrix. III , 1946 .
[92] Costas S. Iliopoulos,et al. Worst-Case Complexity Bounds on Algorithms for Computing the Canonical Structure of Finite Abelian Groups and the Hermite and Smith Normal Forms of an Integer Matrix , 1989, SIAM J. Comput..
[93] Volkmar Welker,et al. Complexes of Directed Graphs , 1999, SIAM J. Discret. Math..
[94] E. Kaltofen. Analysis of Coppersmith's block Wiedemann algorithm for the parallel solution of sparse linear systems , 1995 .
[95] B. Anderson,et al. Asymptotically fast solution of toeplitz and related systems of linear equations , 1980 .
[96] Bruce W. Char,et al. Maple V Library Reference Manual , 1992, Springer New York.
[97] James L. Massey,et al. Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.
[98] Johannes A. Buchmann,et al. On some computational problems in finite abelian groups , 1997, Math. Comput..
[99] Erich Kaltofen,et al. Mr. Smith goes to Las Vegas: Randomized parallel computation of the Smith Normal Form of polynomial matrices , 1987, EUROCAL.
[100] J. Dumas. Calcul parallèle du polynôme minimal entier avec Athapascan-1 et Linbox , 2000 .
[101] Ingmar Neumann,et al. A Parallel Algorithm for Achieving the Smith Normal Form of an Integer Matrix , 1996, Parallel Comput..
[102] B. Beckermann,et al. A Uniform Approach for the Fast Computation of Matrix-Type Padé Approximants , 1994, SIAM J. Matrix Anal. Appl..
[103] Don Coppersmith,et al. Matrix multiplication via arithmetic progressions , 1987, STOC.
[104] Bruce W. Char,et al. Symbolic computation in Java: an appraisement , 1999, ISSAC '99.
[105] Austin A. Lobo. Matrix-free linear system solving and applications to symbolic computation , 1996 .
[106] Bernard Mourrain,et al. A framework for Symbolic and Numeric Computations , 2000 .
[107] V. L. Kurakin. Representations over Z p n of linear recurring sequence of maximal period over GF( p ) , 1993 .
[108] E. Berlekamp. Factoring polynomials over finite fields , 1967 .
[109] Patrick Amestoy,et al. Hybridizing Nested Dissection and Halo Approximate Minimum Degree for Efficient Sparse Matrix Ordering , 1999, IPPS/SPDP Workshops.
[110] Richard S. Varga,et al. On Geršgorin-type problems and ovals of cassini. , 1999 .
[111] D. O’Leary. The block conjugate gradient algorithm and related methods , 1980 .
[112] On the Average of the Least Primitive Root Modulo p , 1996 .
[113] Guy E. Blelloch,et al. NESL: A Nested Data-Parallel Language , 1992 .
[114] J. Rosser,et al. Approximate formulas for some functions of prime numbers , 1962 .
[115] R. Brualdi,et al. Regions in the Complex Plane Containing the Eigenvalues of a Matrix , 1994 .
[116] N. Koblitz. A Course in Number Theory and Cryptography , 1987 .
[117] A. Storjohann. Algorithms for matrix canonical forms , 2000 .
[118] Vaidy S. Sunderam,et al. PVM: A Framework for Parallel Distributed Computing , 1990, Concurr. Pract. Exp..
[119] Y. Saad,et al. On the Lánczos method for solving symmetric linear systems with several right-hand sides , 1987 .
[120] Erich Kaltofen,et al. Parallel algorithms for matrix normal forms , 1990 .
[121] Alfred V. Aho,et al. The Design and Analysis of Computer Algorithms , 1974 .
[122] B. David Saunders,et al. Fraction Free Gaussian Elimination for Sparse Matrices , 1995, J. Symb. Comput..
[123] Victor Y. Pan,et al. Parallel solution of toeplitzlike linear systems , 1992, J. Complex..
[124] Kurt Mehlhorn,et al. The LEDA Platform of Combinatorial and Geometric Computing , 1997, ICALP.
[125] D. Coppersmith. Solving homogeneous linear equations over GF (2) via block Wiedemann algorithm , 1994 .
[126] Gilles Villard,et al. On computing the determinant and Smith form of an integer matrix , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.
[127] Graham H. Norton,et al. On Shortest Linear Recurrences , 1999, J. Symb. Comput..
[128] K. McCurley,et al. A rigorous subexponential algorithm for computation of class groups , 1989 .
[129] Nicholas Carriero,et al. How to write parallel programs: a guide to the perplexed , 1989, CSUR.
[130] Don Coppersmith,et al. Matrix multiplication via arithmetic progressions , 1987, STOC.
[131] M. G. Bruin,et al. A uniform approach for the fast computation of Matrix-type Padé approximants , 1996 .
[132] Arne Storjohann,et al. Near optimal algorithms for computing Smith normal forms of integer matrices , 1996, ISSAC '96.
[133] N. J. A. Sloane,et al. Shift-Register Synthesis (Modula m) , 1985, CRYPTO.
[134] Mark Giesbrecht,et al. Fast computation of the Smith normal form of an integer matrix , 1995, ISSAC '95.
[135] Ravi Kannan,et al. Polynomial Algorithms for Computing the Smith and Hermite Normal Forms of an Integer Matrix , 1979, SIAM J. Comput..
[136] Jean-Pierre Massias,et al. Bornes effectives pour certaines fonctions concernant les nombres premiers , 1996 .
[137] H. Smith. I. On systems of linear indeterminate equations and congruences , 1862, Proceedings of the Royal Society of London.
[138] Michael Ben-Or,et al. Probabilistic algorithms in finite fields , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).
[139] Pierre Dusart,et al. The kth prime is greater than k(ln k + ln ln k - 1) for k >= 2 , 1999, Math. Comput..
[140] Patrick R. Amestoy,et al. An Approximate Minimum Degree Ordering Algorithm , 1996, SIAM J. Matrix Anal. Appl..
[141] V. Shoup. Searching for primitive roots in finite fields , 1990, Symposium on the Theory of Computing.
[142] O. Taussky. Bounds for characteristic roots of matrices , 1948 .
[143] M. Rabin. Probabilistic algorithm for testing primality , 1980 .
[144] K. Mulmuley. A fast parallel algorithm to compute the rank of a matrix over an arbitrary field , 1987, Comb..