Algorithmes parallèles efficaces pour le calcul formel : algèbre linéaire creuse et extensions algébriques. (Efficient parallel algorithm for computer algebra : sparce linear algebra and algebraic extensions)

Depuis quelques annees, l'extension de l'utilisation de l'informatique dans tous les domaines de recherche scientifique et technique se traduit par un besoin croissant de puissance de calcul. Il est donc vital d'employer les microprocesseurs en parallele. Le probleme principal que nous cherchons a resoudre dans cette these est le calcul d'une forme canonique de tres grandes matrices creuses a coefficients entiers, la forme normale de Smith. Par "tres grandes", nous entendons un million d'inconnues et un million d'equations, c'est-a-dire mille milliards de variables. De tels systemes sont meme, en general, impossibles a stocker actuellement. Cependant, nous nous interessons a des systemes dans lesquels beaucoup de ces variables sont identiques et valent zero; on parle dans ce cas de systeme creux. Enfin, nous voulons resoudre ces systemes de maniere exacte, c'est-a-dire que nous travaillons avec des nombres entiers ou dans une structure algebrique plus petite et autorisant toutes les operations classiques, un corps fini. La reconstruction de la solution entiere a partir des solutions plus petites est ensuite relativement aisee.

[1]  J. G. Lewis,et al.  A Shifted Block Lanczos Algorithm for Solving Sparse Symmetric Generalized Eigenproblems , 1994, SIAM J. Matrix Anal. Appl..

[2]  F. R. Gantmakher The Theory of Matrices , 1984 .

[3]  Gilles Villard,et al.  Further analysis of Coppersmith's block Wiedemann algorithm for the solution of sparse linear systems (extended abstract) , 1997, ISSAC.

[4]  Erich Kaltofen,et al.  Challenges of Symbolic Computation: My Favorite Open Problems , 2000, J. Symb. Comput..

[5]  Jean-Guillaume Dumas,et al.  On Efficient Sparse Integer Matrix Smith Normal Form Computations , 2001, J. Symb. Comput..

[6]  Bruce Hendrickson,et al.  Improving the Run Time and Quality of Nested Dissection Ordering , 1998, SIAM J. Sci. Comput..

[7]  J. Faugère A new efficient algorithm for computing Gröbner bases (F4) , 1999 .

[8]  O. Penninga,et al.  Finding column dependencies in sparse matrices over F2 by block Wiedemann , 1998 .

[9]  Erich Kaltofen,et al.  Fast polynomial factorization over high algebraic extensions of finite fields , 1997, ISSAC.

[10]  Jacques Briat,et al.  Athapascan Runtime: Efficiency for Irregular Problems , 1997, Euro-Par.

[11]  E. Berlekamp Factoring polynomials over large finite fields* , 1970, SYMSAC '71.

[12]  Jeremy Teitelbaum,et al.  Euclid's algorithm and the Lanczos method over finite fields , 1998, Math. Comput..

[13]  Jean-Guillaume Dumas,et al.  Integer Smith form via the valence: experience with large sparse matrices from homology , 2000, ISSAC.

[14]  I. Blake,et al.  Computational aspects of discrete logarithms , 1996 .

[15]  Richard Zippel,et al.  Effective polynomial computation , 1993, The Kluwer international series in engineering and computer science.

[16]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[17]  Erich Kaltofen,et al.  On Wiedemann's Method of Solving Sparse Linear Systems , 1991, AAECC.

[18]  Victor J. Rayward-Smith On Computing the Smith Normal Form of an Integer Matrix , 1979, TOMS.

[19]  Raymond Namyst Pm2 : un environnement pour une conception portable et une exécution efficace des applications parallèles irrégulières , 1997 .

[20]  Erich Kaltofen,et al.  Early termination in Ben-Or/Tiwari sparse interpolation and a hybrid of Zippel's algorithm , 2000, ISSAC.

[21]  G. Villard Computing the Frobenius Normal Form of a Sparse Matrix , 2000 .

[22]  H. Simon The Lanczos algorithm with partial reorthogonalization , 1984 .

[23]  A. Turing ROUNDING-OFF ERRORS IN MATRIX PROCESSES , 1948 .

[24]  Corporate The MPI Forum,et al.  MPI: a message passing interface , 1993, Supercomputing '93.

[25]  H. W. Lenstra,et al.  Factoring integers with elliptic curves , 1987 .

[26]  Bruce W. Char,et al.  First Leaves: A Tutorial Introduction to Maple V , 1992 .

[27]  Thierry Gautier Calcul formel et parallélisme : conception du système GIVARO et applications au calcul dans les extensions algébriques , 1996 .

[28]  Wolfgang W. Küchlin Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation : ISSAC 97, July 21-23, 1997, Maui, Hawaii , 1997 .

[29]  E. Bareiss Sylvester’s identity and multistep integer-preserving Gaussian elimination , 1968 .

[30]  Jean Louis Dornstetter On the equivalence between Berlekamp's and Euclid's algorithms , 1987, IEEE Trans. Inf. Theory.

[31]  P. Berman,et al.  On the performance of the minimum degree ordering for Gaussian elimination , 1990 .

[32]  Victor Y. Pan,et al.  Processor-efficient parallel solution of linear systems. II. The positive characteristic and singular cases , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[33]  Jack Dongarra,et al.  An Introduction to the MPI Standard , 1995 .

[34]  J. Friedman,et al.  Computing Betti Numbers via Combinatorial Laplacians , 1996, STOC '96.

[35]  Oscar H. Ibarra,et al.  A Generalization of the Fast LUP Matrix Decomposition Algorithm and Applications , 1982, J. Algorithms.

[36]  V. Strassen Gaussian elimination is not optimal , 1969 .

[37]  Pierre Dusart Autour de la fonction qui compte le nombre de nombres premiers , 1998 .

[38]  Bradley C. Kuszmaul,et al.  Cilk: an efficient multithreaded runtime system , 1995, PPOPP '95.

[39]  Stefania Cavallar,et al.  Strategies in Filtering in the Number Field Sieve , 2000, ANTS.

[40]  I. Duff,et al.  Direct Methods for Sparse Matrices , 1987 .

[41]  Leo Murata On the magnitude of the least prime primitive root , 1991 .

[42]  Don Coppersmith,et al.  Fast evaluation of logarithms in fields of characteristic two , 1984, IEEE Trans. Inf. Theory.

[43]  M. Yannakakis Computing the Minimum Fill-in is NP^Complete , 1981 .

[44]  L. Dagum,et al.  OpenMP: an industry standard API for shared-memory programming , 1998 .

[45]  V. L. Kurakin The first coordinate sequence of a linear recurrence of maximal period over a Galois ring , 1994 .

[46]  Svante Linusson,et al.  COMPLEXES OF NOT i-CONNECTED GRAPHS , 1997, math/9705219.

[47]  Forum Mpi MPI: A Message-Passing Interface , 1994 .

[48]  Friedhelm Meyer auf der Heide,et al.  Efficient PRAM simulation on a distributed memory machine , 1992, STOC '92.

[49]  Douglas H. Wiedemann Solving sparse linear equations over finite fields , 1986, IEEE Trans. Inf. Theory.

[50]  George E. Collins,et al.  Algorithms for the Solution of Systems of Linear Diophantine Equations , 1982, SIAM J. Comput..

[51]  Graham H. Norton,et al.  On Minimal Realization Over a Finite Chain Ring , 1999, Des. Codes Cryptogr..

[52]  Paul Jackson,et al.  Finite Field Arithmetic Using the Connection Machine , 1990, CAP.

[53]  M. Mignotte,et al.  Mathématiques pour le calcul formel , 1989 .

[54]  George Karypis,et al.  Introduction to Parallel Computing , 1994 .

[55]  Erich Kaltofen,et al.  On randomized Lanczos algorithms , 1997, ISSAC.

[56]  Mathias Doreille,et al.  Athapascan-1 : vers un modèle de programmation parallèle adapté au calcul scientifique. (Athapascan-1 : towards a parallel programming model adapted to the scientific computation) , 1999 .

[57]  S. Eisenstat,et al.  Node Selection Strategies for Bottom-Up Sparse Matrix Ordering , 1998, SIAM J. Matrix Anal. Appl..

[58]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[59]  Gilles Villard,et al.  Fast Parallel Algorithms for Matrix Reduction to Normal Forms , 1997, Applicable Algebra in Engineering, Communication and Computing.

[60]  Mark Giesbrecht,et al.  Probabilistic Computation of the Smith Normal Form of a Sparse Integer Matrix , 1996, ANTS.

[61]  Underwood Dudley Elementary Number Theory , 1978 .

[62]  Keith O. Geddes,et al.  Maple V Programming Guide , 1996 .

[63]  Zhishun A. Liu,et al.  A Look Ahead Lanczos Algorithm for Unsymmetric Matrices , 1985 .

[64]  Andrew M. Odlyzko,et al.  Solving Large Sparse Linear Systems over Finite Fields , 1990, CRYPTO.

[65]  D. Laksov,et al.  Counting Matrices with Coordinates in Finite Fields and of Fixed Rank. , 1994 .

[66]  Graham H. Norton,et al.  Linear recurrence relations and an extended subresultant algorithm , 1988, Coding Theory and Applications.

[67]  Jean-Louis Roch,et al.  Parallel computer algebra (tutorial) , 1997, ISSAC 1997.

[68]  Rice UniversityCORPORATE,et al.  High performance Fortran language specification , 1993 .

[69]  Patrick R. Amestoy,et al.  Hybridizing nested dissection and halo approximate minimum degree for efficient sparse matrix ordering , 2000 .

[70]  J. Pollard A monte carlo method for factorization , 1975 .

[71]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[72]  Victor Shoup,et al.  Fast construction of irreducible polynomials over finite fields , 1994, SODA '93.

[73]  David Gelernter,et al.  Generative communication in Linda , 1985, TOPL.

[74]  A. Street,et al.  Combinatorics: room squares, sum-free sets, Hadamard matrices , 1972 .

[75]  D. Cantor,et al.  A new algorithm for factoring polynomials over finite fields , 1981 .

[76]  G. Miller Linear Groups with an Exposition of the Galois Field Theory , 1902 .

[77]  Jack J. Dongarra,et al.  A proposal for a set of level 3 basic linear algebra subprograms , 1987, SGNM.

[78]  D. Coppersmith Solving linear equations over GF(2): block Lanczos algorithm , 1993 .

[79]  Z. Zlatev Computational Methods for General Sparse Matrices , 1991 .

[80]  François Galilée Athapascan-1 : interprétation distribuée du flot de données d'un programme parallèle. (Athapascan-1 : distributed interpretation of parallel programs based on data flow analysis) , 1999 .

[81]  J. Cocteau Les mariés de la Tour Eiffel , 1924 .

[82]  Monica S. Lam,et al.  The design, implementation, and evaluation of Jade , 1998, TOPL.

[83]  Andrew M. Odlyzko,et al.  Discrete Logarithms: The Past and the Future , 2000, Des. Codes Cryptogr..

[84]  G. Villard A study of Coppersmith's block Wiedemann algorithm using matrix polynomials , 1997 .

[85]  Peter L. Montgomery,et al.  A Block Lanczos Algorithm for Finding Dependencies Over GF(2) , 1995, EUROCRYPT.

[86]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[87]  Stephen Wolfram,et al.  The Mathematica Book , 1996 .

[88]  Victor Reiner,et al.  Minimal Resolutions and the Homology of Matching and Chessboard Complexes , 2000 .

[89]  Erich Kaltofen,et al.  Distributed Matrix-Free Solution of Large Sparse Linear Systems over Finite Fields , 1999, Algorithmica.

[90]  Graham H. Norton,et al.  On the Minimal Realizations of a Finite Sequence , 1995, J. Symb. Comput..

[91]  A. Brauer Limits for the characteristic roots of a matrix. III , 1946 .

[92]  Costas S. Iliopoulos,et al.  Worst-Case Complexity Bounds on Algorithms for Computing the Canonical Structure of Finite Abelian Groups and the Hermite and Smith Normal Forms of an Integer Matrix , 1989, SIAM J. Comput..

[93]  Volkmar Welker,et al.  Complexes of Directed Graphs , 1999, SIAM J. Discret. Math..

[94]  E. Kaltofen Analysis of Coppersmith's block Wiedemann algorithm for the parallel solution of sparse linear systems , 1995 .

[95]  B. Anderson,et al.  Asymptotically fast solution of toeplitz and related systems of linear equations , 1980 .

[96]  Bruce W. Char,et al.  Maple V Library Reference Manual , 1992, Springer New York.

[97]  James L. Massey,et al.  Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.

[98]  Johannes A. Buchmann,et al.  On some computational problems in finite abelian groups , 1997, Math. Comput..

[99]  Erich Kaltofen,et al.  Mr. Smith goes to Las Vegas: Randomized parallel computation of the Smith Normal Form of polynomial matrices , 1987, EUROCAL.

[100]  J. Dumas Calcul parallèle du polynôme minimal entier avec Athapascan-1 et Linbox , 2000 .

[101]  Ingmar Neumann,et al.  A Parallel Algorithm for Achieving the Smith Normal Form of an Integer Matrix , 1996, Parallel Comput..

[102]  B. Beckermann,et al.  A Uniform Approach for the Fast Computation of Matrix-Type Padé Approximants , 1994, SIAM J. Matrix Anal. Appl..

[103]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[104]  Bruce W. Char,et al.  Symbolic computation in Java: an appraisement , 1999, ISSAC '99.

[105]  Austin A. Lobo Matrix-free linear system solving and applications to symbolic computation , 1996 .

[106]  Bernard Mourrain,et al.  A framework for Symbolic and Numeric Computations , 2000 .

[107]  V. L. Kurakin Representations over Z p n of linear recurring sequence of maximal period over GF( p ) , 1993 .

[108]  E. Berlekamp Factoring polynomials over finite fields , 1967 .

[109]  Patrick Amestoy,et al.  Hybridizing Nested Dissection and Halo Approximate Minimum Degree for Efficient Sparse Matrix Ordering , 1999, IPPS/SPDP Workshops.

[110]  Richard S. Varga,et al.  On Geršgorin-type problems and ovals of cassini. , 1999 .

[111]  D. O’Leary The block conjugate gradient algorithm and related methods , 1980 .

[112]  On the Average of the Least Primitive Root Modulo p , 1996 .

[113]  Guy E. Blelloch,et al.  NESL: A Nested Data-Parallel Language , 1992 .

[114]  J. Rosser,et al.  Approximate formulas for some functions of prime numbers , 1962 .

[115]  R. Brualdi,et al.  Regions in the Complex Plane Containing the Eigenvalues of a Matrix , 1994 .

[116]  N. Koblitz A Course in Number Theory and Cryptography , 1987 .

[117]  A. Storjohann Algorithms for matrix canonical forms , 2000 .

[118]  Vaidy S. Sunderam,et al.  PVM: A Framework for Parallel Distributed Computing , 1990, Concurr. Pract. Exp..

[119]  Y. Saad,et al.  On the Lánczos method for solving symmetric linear systems with several right-hand sides , 1987 .

[120]  Erich Kaltofen,et al.  Parallel algorithms for matrix normal forms , 1990 .

[121]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[122]  B. David Saunders,et al.  Fraction Free Gaussian Elimination for Sparse Matrices , 1995, J. Symb. Comput..

[123]  Victor Y. Pan,et al.  Parallel solution of toeplitzlike linear systems , 1992, J. Complex..

[124]  Kurt Mehlhorn,et al.  The LEDA Platform of Combinatorial and Geometric Computing , 1997, ICALP.

[125]  D. Coppersmith Solving homogeneous linear equations over GF (2) via block Wiedemann algorithm , 1994 .

[126]  Gilles Villard,et al.  On computing the determinant and Smith form of an integer matrix , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[127]  Graham H. Norton,et al.  On Shortest Linear Recurrences , 1999, J. Symb. Comput..

[128]  K. McCurley,et al.  A rigorous subexponential algorithm for computation of class groups , 1989 .

[129]  Nicholas Carriero,et al.  How to write parallel programs: a guide to the perplexed , 1989, CSUR.

[130]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[131]  M. G. Bruin,et al.  A uniform approach for the fast computation of Matrix-type Padé approximants , 1996 .

[132]  Arne Storjohann,et al.  Near optimal algorithms for computing Smith normal forms of integer matrices , 1996, ISSAC '96.

[133]  N. J. A. Sloane,et al.  Shift-Register Synthesis (Modula m) , 1985, CRYPTO.

[134]  Mark Giesbrecht,et al.  Fast computation of the Smith normal form of an integer matrix , 1995, ISSAC '95.

[135]  Ravi Kannan,et al.  Polynomial Algorithms for Computing the Smith and Hermite Normal Forms of an Integer Matrix , 1979, SIAM J. Comput..

[136]  Jean-Pierre Massias,et al.  Bornes effectives pour certaines fonctions concernant les nombres premiers , 1996 .

[137]  H. Smith I. On systems of linear indeterminate equations and congruences , 1862, Proceedings of the Royal Society of London.

[138]  Michael Ben-Or,et al.  Probabilistic algorithms in finite fields , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[139]  Pierre Dusart,et al.  The kth prime is greater than k(ln k + ln ln k - 1) for k >= 2 , 1999, Math. Comput..

[140]  Patrick R. Amestoy,et al.  An Approximate Minimum Degree Ordering Algorithm , 1996, SIAM J. Matrix Anal. Appl..

[141]  V. Shoup Searching for primitive roots in finite fields , 1990, Symposium on the Theory of Computing.

[142]  O. Taussky Bounds for characteristic roots of matrices , 1948 .

[143]  M. Rabin Probabilistic algorithm for testing primality , 1980 .

[144]  K. Mulmuley A fast parallel algorithm to compute the rank of a matrix over an arbitrary field , 1987, Comb..