All-optical quantum simulator of qubit noisy channels

We suggest and demonstrate an all-optical quantum simulator for single-qubit noisy channels originating from the interaction with a fluctuating field. The simulator employs the polarization degree of freedom of a single photon and exploits its spectral components to average over the realizations of the stochastic dynamics. As a proof of principle, we run simulations of dephasing channels driven either by Gaussian (Ornstein-Uhlenbeck) or non-Gaussian (random telegraph) stochastic processes.

[1]  Robert Joynt,et al.  Classical simulation of quantum dephasing and depolarizing noise , 2014 .

[2]  Ting Yu,et al.  Sudden death of entanglement: Classical noise effects , 2006 .

[3]  S. Olivares,et al.  Two-step procedure to discriminate discordant from classical correlated or factorized states , 2014, 1411.3543.

[4]  Pechukas,et al.  Reduced dynamics need not be completely positive. , 1994, Physical review letters.

[5]  A. Zeilinger,et al.  Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems , 2010, 1008.4116.

[6]  Jyrki Piilo,et al.  Measure for the degree of non-markovian behavior of quantum processes in open systems. , 2009, Physical review letters.

[7]  Erika Andersson,et al.  Revival of quantum correlations without system-environment back-action , 2010, 1009.5710.

[8]  Alán Aspuru-Guzik,et al.  Photonic quantum simulators , 2012, Nature Physics.

[9]  A. Weiner Femtosecond pulse shaping using spatial light modulators , 2000 .

[10]  Teich,et al.  Coherence properties of entangled light beams generated by parametric down-conversion: Theory and experiment. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[11]  G. Falci,et al.  1 / f noise: Implications for solid-state quantum information , 2013, 1304.7925.

[12]  M. Paris,et al.  Non-Markovian dynamics of single- and two-qubit systems interacting with Gaussian and non-Gaussian fluctuating transverse environments. , 2015, The Journal of chemical physics.

[13]  Joakim Bergli,et al.  Decoherence of a qubit due to either a quantum fluctuator, or classical telegraph noise , 2012, 1206.2174.

[14]  A Aspuru-Guzik,et al.  Discrete single-photon quantum walks with tunable decoherence. , 2010, Physical review letters.

[15]  G. D’Ariano,et al.  Maximum-likelihood estimation of the density matrix , 1999, quant-ph/9909052.

[16]  M. Paris,et al.  Non-Markovianity of colored noisy channels , 2013, 1309.5270.

[17]  Xiaowei Deng,et al.  Continuous variable quantum optical simulation for time evolution of quantum harmonic oscillators , 2016, Scientific Reports.

[18]  Elsi-Mari Laine,et al.  Colloquium: Non-Markovian dynamics in open quantum systems , 2015, 1505.01385.

[19]  Andrew G. White,et al.  Measurement of qubits , 2001, quant-ph/0103121.

[20]  Engineering decoherence for two-qubit systems interacting with a classical environment , 2014, 1408.3010.

[21]  Guang-Can Guo,et al.  Experimental recovery of quantum correlations in absence of system-environment back-action , 2013, Nature Communications.

[22]  B. Lanyon,et al.  Towards quantum chemistry on a quantum computer. , 2009, Nature chemistry.