Traces of Singular Moduli and Moonshine for the Thompson Group

We describe a relationship between the representation theory of the Thompson sporadic group and a weakly holomorphic modular form of weight one-half that appears in work of Borcherds and Zagier on Borcherds products and traces of singular moduli. We conjecture the existence of an infinite dimensional graded module for the Thompson group and provide evidence for our conjecture by constructing McKay--Thompson series for each conjugacy class of the Thompson group that coincide with weight one-half modular forms of higher level. We also observe a discriminant property in this moonshine for the Thompson group that is closely related to the discriminant property conjectured to exist in Umbral Moonshine.

[1]  Alison Miller,et al.  ARITHMETIC TRACES OF NON-HOLOMORPHIC MODULAR INVARIANTS , 2010 .

[2]  R. Borcherds Automorphic forms onOs+2,2(R) and infinite products , 1995 .

[3]  D. Niebur A class of nonanalytic automorphic functions , 1973, Nagoya Mathematical Journal.

[4]  Lea Beneish,et al.  Traces of singular values of Hauptmoduln , 2014, 1407.4479.

[5]  Miranda C. N. Cheng,et al.  On Rademacher Sums, the Largest Mathieu Group, and the Holographic Modularity of Moonshine , 2011, 1110.3859.

[6]  T. Eguchi,et al.  Note on twisted elliptic genus of K3 surface , 2010, 1008.4924.

[7]  W. Feit The computations of some Schur indices , 1983 .

[8]  Miranda C. N. Cheng,et al.  Rademacher Sums and Rademacher Series , 2012, 1210.3066.

[9]  Super-moonshine for Conway's largest sporadic group , 2005, math/0502267.

[10]  I. Frenkel,et al.  Rademacher sums, moonshine and gravity , 2009, 0907.4529.

[11]  J. Lepowsky,et al.  A natural representation of the Fischer-Griess Monster with the modular function J as character. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Tohru Eguchi,et al.  Notes on the K3 Surface and the Mathieu Group M 24 , 2010, Exp. Math..

[13]  Scott Carnahan Generalized moonshine, II: Borcherds products , 2009, 0908.4223.

[14]  K. Ono,et al.  Classical and Umbral Moonshine: Connections and $p$-adic Properties , 2014, 1403.3712.

[15]  Miranda C. N. Cheng,et al.  Umbral moonshine and the Niemeier lattices , 2013, Research in the Mathematical Sciences.

[16]  Richard E. Borcherds,et al.  Monstrous moonshine and monstrous Lie superalgebras , 1992 .

[17]  Don Zagier,et al.  Traces of singular moduli , 2002 .

[18]  K. Ono ARITHMETIC PROPERTIES OF COEFFICIENTS OF HALF-INTEGRAL WEIGHT MAASS-POINCARÉ SERIES , 2006 .

[19]  A level N reduction theory of indefinite binary quadratic forms , 2006, math/0603149.

[20]  K. Bringmann,et al.  Arithmetic properties of coefficients of half-integral weight Maass–Poincaré series , 2007 .

[21]  H. Gerald Selbstduale Vertexoperatorsuperalgebren und das Babymonster , 2007 .

[22]  Gerald Hoehn Selbstduale Vertexoperatorsuperalgebren und das Babymonster (Self-dual Vertex Operator Super Algebras and the Baby Monster) , 2007, 0706.0236.

[23]  J. Lepowsky,et al.  A moonshine module for the Monster , 1985 .

[24]  S. Hohenegger,et al.  Mathieu twining characters for K3 , 2010, 1006.0221.

[25]  Miranda C. N. Cheng K3 Surfaces, N=4 Dyons, and the Mathieu Group M24 , 2010, 1005.5415.

[26]  Gerald Höhn,et al.  The McKay–Thompson series of Mathieu Moonshine modulo two , 2012, 1211.3703.

[27]  Michael J. Griffin,et al.  Proof of the umbral moonshine conjecture , 2015, 1503.01472.

[28]  P. Ginsparg,et al.  Beauty and the beast: Superconformal symmetry in a monster module , 1988 .

[29]  J. Harvey,et al.  The Umbral Moonshine Module for the Unique Unimodular Niemeier Root System , 2014, 1412.8191.

[30]  J. Conway,et al.  ATLAS of Finite Groups , 1985 .

[31]  Ozlem Umdu,et al.  Monstrous moonshine , 2019, 100 Years of Math Milestones.

[32]  S. Hohenegger,et al.  Mathieu Moonshine in the elliptic genus of K3 , 2010, 1008.3778.