Single-walled carbon nanotubes under the influence of dynamic coordination and supramolecular chemistry.

A dynamic coordinative-directed solubilization of single-walled carbon nanotubes (SWNTs) in aqueous solutions has been achieved through a combination of a Zn(II) metalloporphyrin complex and a cis-protected Pd(II) complex, which are believed to form charged acyclic and/or cyclic adducts on or around the side walls of SWNTs. The solubilization of SWNTs in aqueous solution only occurs when these acyclic and/or cyclic complexes are allowed to enter simultaneously into a self-assembly process with SWNTs under mild conditions. The aqueous solubility properties that these dynamic complexes confer upon SWNTs are believed to involve noncovalent bonding interactions between the two entities. They have been probed in solution using ultraviolet and visible absorption spectroscopy and in thin films using high-resolution transmission electron microscopy. The supramolecular electronic effects that the individual components of their acyclic and/or cyclic complexes impart upon a single semiconducting SWNT have been probed within a nanotube field-effect transistor device.

[1]  Michael S Strano,et al.  Concomitant length and diameter separation of single-walled carbon nanotubes. , 2004, Journal of the American Chemical Society.

[2]  M. Prato,et al.  Integrating single-wall carbon nanotubes into donor-acceptor nanohybrids. , 2004, Angewandte Chemie.

[3]  M. Strano,et al.  Using the Selective Functionalization of Metallic Single-Walled Carbon Nanotubes to Control Dielectrophoretic Mobility , 2004 .

[4]  Jun Li,et al.  Poly-l-lysine Functionalization of Single-Walled Carbon Nanotubes , 2004 .

[5]  J. Coleman,et al.  A generic organometallic approach toward ultra-strong carbon nanotube polymer composites. , 2004, Journal of the American Chemical Society.

[6]  M. Yudasaka,et al.  Dispersing Carbon Nanotubes in Water: A Noncovalent and Nonorganic Way , 2004 .

[7]  Ray H Baughman,et al.  Preparation and characterization of individual peptide-wrapped single-walled carbon nanotubes. , 2004, Journal of the American Chemical Society.

[8]  T. Aida,et al.  Selective extraction of higher fullerenes using cyclic dimers of zinc porphyrins. , 2004, Journal of the American Chemical Society.

[9]  Ming Zheng,et al.  Understanding the Nature of the DNA-Assisted Separation of Single-Walled Carbon Nanotubes Using Fluorescence and Raman Spectroscopy , 2004 .

[10]  James M Tour,et al.  Overcoming the insolubility of carbon nanotubes through high degrees of sidewall functionalization. , 2004, Chemistry.

[11]  K. Sakurai,et al.  Curdlan and schizophyllan (β-1,3-glucans) can entrap single-wall carbon nanotubes in their helical superstructure , 2004 .

[12]  Ya‐Ping Sun,et al.  Selective interactions of porphyrins with semiconducting single-walled carbon nanotubes. , 2004, Journal of the American Chemical Society.

[13]  M. Dresselhaus,et al.  Structure-Based Carbon Nanotube Sorting by Sequence-Dependent DNA Assembly , 2003, Science.

[14]  Hiroto Murakami,et al.  Noncovalent porphyrin-functionalized single-walled carbon nanotubes in solution and the formation of porphyrin-nanotube nanocomposites , 2003 .

[15]  K. Biradha,et al.  Multicomponent assembly of a pyrazine-pillared coordination cage that selectively binds planar guests by intercalation. , 2003, Angewandte Chemie.

[16]  Mao-Hua Du,et al.  Bulk Separative Enrichment in Metallic or Semiconducting Single-Walled Carbon Nanotubes , 2003 .

[17]  R. Krupke,et al.  Separation of Metallic from Semiconducting Single-Walled Carbon Nanotubes , 2003, Science.

[18]  L. Ley,et al.  Functionalization of single-walled carbon nanotubes with (R-)oxycarbonyl nitrenes. , 2003, Journal of the American Chemical Society.

[19]  Stanislaus S. Wong,et al.  Rational chemical strategies for carbon nanotube functionalization. , 2003, Chemistry.

[20]  T. Ebbesen,et al.  Supramolecular Self-Assembly of Lipid Derivatives on Carbon Nanotubes , 2003, Science.

[21]  M. Zheng,et al.  DNA-assisted dispersion and separation of carbon nanotubes , 2003, Nature materials.

[22]  M. Ratner,et al.  Single-Walled Carbon Nanotubes and C60 Encapsulated by a Molecular Macrocycle , 2003 .

[23]  T. A. Taton,et al.  Micelle-encapsulated carbon nanotubes: a route to nanotube composites. , 2003, Journal of the American Chemical Society.

[24]  G. Grüner,et al.  Influence of Mobile Ions on Nanotube Based FET Devices , 2003 .

[25]  W. Kutner,et al.  Water solubilization, determination of the number of different types of single-wall carbon nanotubes and their partial separation with respect to diameters by complexation with eta-cyclodextrin. , 2003, Chemical communications.

[26]  J. Baldwin,et al.  Solubilization of single-wall carbon nanotubes by supramolecular encapsulation of helical amylose. , 2003, Journal of the American Chemical Society.

[27]  Y. Chiang,et al.  Peptides with selective affinity for carbon nanotubes , 2003, Nature materials.

[28]  Fotios Papadimitrakopoulos,et al.  A route for bulk separation of semiconducting from metallic single-wall carbon nanotubes. , 2003, Journal of the American Chemical Society.

[29]  B. Prasad,et al.  Imprinted Polymer – Modified Hanging Mercury Drop Electrode for Differential Pulse Adsorptive Stripping Voltammetric Analysis of a Diquat Herbicide , 2003 .

[30]  Edgar Muñoz,et al.  Controlled assembly of carbon nanotubes by designed amphiphilic Peptide helices. , 2003, Journal of the American Chemical Society.

[31]  F. Porta,et al.  Open network architectures from the self-assembly of AgNO3 and 5,10,15,20-tetra(4-pyridyl)porphyrin (H2tpyp) building blocks: the exceptional self-penetrating topology of the 3D network of [Ag8(ZnIItpyp)7(H2O)2](NO3)8. , 2003, Angewandte Chemie.

[32]  Ophir Vermesh,et al.  Hysteresis caused by water molecules in carbon nanotube field-effect transistors , 2003 .

[33]  J. Tour,et al.  Solvent-free functionalization of carbon nanotubes. , 2003, Journal of the American Chemical Society.

[34]  J. F. Stoddart,et al.  Noncovalent Side-Wall Functionalization of Single-Walled Carbon Nanotubes , 2003 .

[35]  Yi Lin,et al.  Functionalized carbon nanotubes: properties and applications. , 2002, Accounts of chemical research.

[36]  M. Itkis,et al.  Chemistry of single-walled carbon nanotubes. , 2002, Accounts of chemical research.

[37]  Charles M Lieber,et al.  Fundamental electronic properties and applications of single-walled carbon nanotubes. , 2002, Accounts of chemical research.

[38]  J. F. Stoddart,et al.  Dispersion and Solubilization of Single-Walled Carbon Nanotubes with a Hyperbranched Polymer , 2002 .

[39]  Hongjie Dai,et al.  Carbon nanotubes: synthesis, integration, and properties. , 2002, Accounts of chemical research.

[40]  A. Osuka,et al.  A self-assembled porphyrin box from meso-meso-linked bis[5-p-pyridyl-15-(3,5-di-octyloxyphenyl)porphyrinato zinc(II)]. , 2002, Angewandte Chemie.

[41]  Phaedon Avouris,et al.  Molecular electronics with carbon nanotubes. , 2002, Accounts of chemical research.

[42]  V. C. Moore,et al.  Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes , 2002, Science.

[43]  James R Heath,et al.  Starched carbon nanotubes. , 2002, Angewandte Chemie.

[44]  Gilbert C Walker,et al.  Noncovalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymers. , 2002, Journal of the American Chemical Society.

[45]  A. Hirsch Functionalization of single-walled carbon nanotubes. , 2002, Angewandte Chemie.

[46]  A. Hirsch,et al.  Funktionalisierung von einwandigen Kohlenstoffnanoröhren , 2002 .

[47]  F. Tham,et al.  Supramolecular fullerene-porphyrin chemistry. Fullerene complexation by metalated "jaws porphyrin" hosts. , 2002, Journal of the American Chemical Society.

[48]  Stuart J Rowan,et al.  Dynamic covalent chemistry. , 2002, Angewandte Chemie.

[49]  Graham R. L. Cousins,et al.  Dynamische kovalente Chemie , 2002 .

[50]  J. F. Stoddart,et al.  Interactions between Conjugated Polymers and Single-Walled Carbon Nanotubes , 2002 .

[51]  A Javey,et al.  Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors. , 2001, Journal of the American Chemical Society.

[52]  J. Tour,et al.  Highly Functionalized Carbon Nanotubes Using in Situ Generated Diazonium Compounds , 2001 .

[53]  C. Dekker,et al.  Logic Circuits with Carbon Nanotube Transistors , 2001, Science.

[54]  R. Smalley,et al.  Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping , 2001 .

[55]  M. J. Dyer,et al.  Cyclodextrin-mediated soft cutting of single-walled carbon nanotubes. , 2001, Journal of the American Chemical Society.

[56]  J. Fraser Stoddart,et al.  Preparation and Properties of Polymer-Wrapped Single-Walled Carbon Nanotubes , 2001 .

[57]  P. Poulin,et al.  Macroscopic fibers and ribbons of oriented carbon nanotubes. , 2000, Science.

[58]  M. Yudasaka,et al.  Effect of an organic polymer in purification and cutting of single-wall carbon nanotubes , 2000 .

[59]  Jason E. Riggs,et al.  Strong Luminescence of Solubilized Carbon Nanotubes , 2000 .

[60]  S. Tans,et al.  Molecular transistors: Potential modulations along carbon nanotubes , 2000, Nature.

[61]  Angel Rubio,et al.  Phase separation of carbon nanotubes and turbostratic graphite using a functional organic polymer , 2000 .

[62]  Serge Lefrant,et al.  Characterization of singlewalled carbon nanotubes-PMMA composites , 2000 .

[63]  François Diederich,et al.  Supramolecular fullerene chemistry , 1999 .

[64]  Takuzo Aida,et al.  A Cyclic Dimer of Metalloporphyrin Forms a Highly Stable Inclusion Complex with C60 , 1999 .

[65]  Kenneth A. Smith,et al.  Reversible sidewall functionalization of buckytubes , 1999 .

[66]  M. Itkis,et al.  Dissolution of Single‐Walled Carbon Nanotubes , 1999 .

[67]  P. Ajayan Nanotubes from Carbon. , 1999, Chemical reviews.

[68]  Nobuhiro Takeda,et al.  A nanometre-sized hexahedral coordination capsule assembled from 24 components , 1999, Nature.

[69]  Herbert Shea,et al.  Single- and multi-wall carbon nanotube field-effect transistors , 1998 .

[70]  Eklund,et al.  Solution properties of single-walled carbon nanotubes , 1998, Science.

[71]  David L. Carroll,et al.  A Composite from Poly(m‐phenylenevinylene‐co‐2,5‐dioctoxy‐p‐phenylenevinylene) and Carbon Nanotubes: A Novel Material for Molecular Optoelectronics , 1998 .

[72]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[73]  H. Dai,et al.  Individual single-wall carbon nanotubes as quantum wires , 1997, Nature.

[74]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[75]  M. Fujita,et al.  Preparation of a macrocyclic polynuclear complex, [(en)Pd(4,4'-bpy)]4(NO3)8 (en = ethylenediamine, bpy = bipyridine), which recognizes an organic molecule in aqueous media , 1990 .

[76]  C. Hunter,et al.  Thermodynamics of induced-fit binding inside polymacrocyclic porphyrin hosts , 1990 .

[77]  Joseph R. Stetter,et al.  Sensing with Nafion Coated Carbon Nanotube Field-Effect Transistors , 2004 .

[78]  J. Gabriel Large Scale Production of Carbon Nanotube Transistors: A Generic Platform for Chemical Sensors , 2003 .

[79]  R. Bandyopadhyaya,et al.  Stabilization of Individual Carbon Nanotubes in Aqueous Solutions , 2002 .

[80]  S. Louie Electronic Properties, Junctions, and Defects of Carbon Nanotubes , 2001 .

[81]  P. Ajayan,et al.  Applications of Carbon Nanotubes , 2001 .

[82]  Kumar Biradha,et al.  Molecular paneling via coordination , 2001 .

[83]  P. Avouris,et al.  Mechanical Properties of Carbon Nanotubes , 2001 .

[84]  M. Fujita,et al.  Self-Assembly of [2]Catenanes Containing Metals in Their Backbones , 1999 .

[85]  P. Stang,et al.  Molecular architecture via coordination: Self-assembly of cyclic cationic porphyrin aggregates via transition-metal bisphosphane auxiliaries , 1997 .

[86]  G. Westman,et al.  C60 embedded in γ-cyclodextrin: a water-soluble fullerene , 1992 .

[87]  F. Wimmer,et al.  Preparation and interconversion of dimeric di-µ-hydroxo and tri-µ-hydroxo complexes of platinum(II) and palladium(II) with 2,2′-bipyridine and 1,10-phenanthroline , 1989 .