Scale-free Flow of Life: On the Biology, Economics, and Physics of the Cell

The present work is intended to demonstrate that most of the paradoxes, controversies, and contradictions accumulated in molecular and cell biology over many years of research can be readily resolved if the cell and living systems in general are re-interpreted within an alternative paradigm of biological organization that is based on the concepts and empirical laws of nonequilibrium thermodynamics. In addition to resolving paradoxes and controversies, the proposed re-conceptualization of the cell and biological organization reveals hitherto unappreciated connections among many seemingly disparate phenomena and observations, and provides new and powerful insights into the universal principles governing the emergence and organizational dynamics of living systems on each and every scale of biological organizational hierarchy, from proteins and cells to economies and ecologies.

[1]  Ruedi Aebersold,et al.  Mass Spectrometric Characterization of Proteins Extracted from Jurkat T Cell Detergent-Resistant Membrane Domains , 2001, Proteomics.

[2]  Young-Gyu Ko,et al.  Lipid raft proteome reveals ATP synthase complex in the cell surface , 2004, Proteomics.

[3]  Sean R. Collins,et al.  Global landscape of protein complexes in the yeast Saccharomyces cerevisiae , 2006, Nature.

[4]  Alexei Kurakin,et al.  Self-organization versus Watchmaker: stochastic dynamics of cellular organization , 2005, Biological chemistry.

[5]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[6]  Alisdair R Fernie,et al.  Glycolytic Enzymes Associate Dynamically with Mitochondria in Response to Respiratory Demand and Support Substrate Channeling[W] , 2007, The Plant Cell Online.

[7]  James H. Brown,et al.  A General Model for the Origin of Allometric Scaling Laws in Biology , 1997, Science.

[8]  Daniel Kersten,et al.  Bayesian models of object perception , 2003, Current Opinion in Neurobiology.

[9]  Ilya Prigogine,et al.  Order out of chaos , 1984 .

[10]  Steven D Schwartz,et al.  Barrier passage and protein dynamics in enzymatically catalyzed reactions. , 2002, European journal of biochemistry.

[11]  P W Hochachka,et al.  The metabolic implications of intracellular circulation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[12]  A. Winfree,et al.  Spatial and temporal organization in the Zhabotinsky reaction. , 1977, Advances in biological and medical physics.

[13]  James R. Knight,et al.  A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae , 2000, Nature.

[14]  Tamás Sattler,et al.  J. K. Galbraith: A Journey Through Economic Time (A Firsthand View). Houghton Mifflin Company, Boston-New York, 1994. 255 o , 1995 .

[15]  P. Tompa,et al.  Structural disorder throws new light on moonlighting. , 2005, Trends in biochemical sciences.

[16]  P. Bork,et al.  Proteome survey reveals modularity of the yeast cell machinery , 2006, Nature.

[17]  Gregory I. Mashanov,et al.  Single Molecule Enzymology , 2011, Methods in Molecular Biology.

[18]  W. V. van Cappellen,et al.  DNA damage stabilizes interaction of CSB with the transcription elongation machinery , 2004, The Journal of cell biology.

[19]  E. Padlan,et al.  Three-dimensional structure of the tryptophan synthase alpha 2 beta 2 multienzyme complex from Salmonella typhimurium. , 1988, The Journal of biological chemistry.

[20]  G. Ling,et al.  Debunking the alleged resurrection of the sodium pump hypothesis. , 1997, Physiological chemistry and physics and medical NMR.

[21]  A. Houtsmuller,et al.  Rapid switching of TFIIH between RNA polymerase I and II transcription and DNA repair in vivo. , 2002, Molecular cell.

[22]  Per Bak,et al.  How Nature Works , 1996 .

[23]  Joaquín Goñi,et al.  Fractal dimension and white matter changes in multiple sclerosis , 2007, NeuroImage.

[24]  Edward R B McCabe,et al.  Single-gene disorders: what role could moonlighting enzymes play? , 2005, American journal of human genetics.

[25]  R. Ranganathan,et al.  Evolutionarily conserved pathways of energetic connectivity in protein families. , 1999, Science.

[26]  F. Raushel,et al.  Enzymes with molecular tunnels. , 2003, Accounts of chemical research.

[27]  C. Hoogenraad,et al.  Relative and Absolute Quantification of Postsynaptic Density Proteome Isolated from Rat Forebrain and Cerebellum*S , 2006, Molecular & Cellular Proteomics.

[28]  Y. Nogi,et al.  Structural alterations of the nucleolus in mutants of Saccharomyces cerevisiae defective in RNA polymerase I , 1993, Molecular and cellular biology.

[29]  Paul S Agutter,et al.  Cell mechanics and stress: from molecular details to the ‘universal cell reaction’ and hormesis , 2007, BioEssays : news and reviews in molecular, cellular and developmental biology.

[30]  M. Gurney,et al.  Molecular cloning and expression of neuroleukin, a neurotrophic factor for spinal and sensory neurons. , 1986, Science.

[31]  Richard D. Bagshaw,et al.  A Proteomic Analysis of Lysosomal Integral Membrane Proteins Reveals the Diverse Composition of the Organelle*S , 2005, Molecular & Cellular Proteomics.

[32]  M A Sirover,et al.  New insights into an old protein: the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase. , 1999, Biochimica et biophysica acta.

[33]  John Kenneth Galbraith,et al.  The Essential Galbraith , 2001 .

[34]  W. Xu,et al.  The differentiation and maturation mediator for human myeloid leukemia cells shares homology with neuroleukin or phosphoglucose isomerase. , 1996, Blood.

[35]  G R Welch,et al.  Macromolecular interactions: tracing the roots. , 2000, Trends in biochemical sciences.

[36]  M. Kleiber Body size and metabolism , 1932 .

[37]  Van Regenmortel Mh,et al.  A paradigm shift is needed in proteomics: ‘structure determines function’ should be replaced by ‘binding determines function’ , 2002 .

[38]  A. Gregory Matera,et al.  Residual Cajal bodies in coilin knockout mice fail to recruit Sm snRNPs and SMN, the spinal muscular atrophy gene product , 2001, The Journal of cell biology.

[39]  Barry Moran,et al.  The Lung , 1937, Canadian Medical Association journal.

[40]  R. Ozawa,et al.  A comprehensive two-hybrid analysis to explore the yeast protein interactome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[41]  A. Goldberger Fractal Variability Versus Pathologic Periodicity: Complexity Loss and Stereotypy in Disease , 1997, Perspectives in biology and medicine.

[42]  Alexei Kurakin,et al.  The PDZ Domain as a Complex Adaptive System , 2007, PloS one.

[43]  Marc H V Van Regenmortel,et al.  A paradigm shift is needed in proteomics: 'structure determines function' should be replaced by 'binding determines function'. , 2002, Journal of molecular recognition : JMR.

[44]  A. Terzic,et al.  Phosphotransfer networks and cellular energetics , 2003, Journal of Experimental Biology.

[45]  Ruedi Aebersold,et al.  Mass Spectrometric Characterization of Proteins Extracted from Jurkat T Cell Detergent-Resistant Membrane Domains , 2001 .

[46]  R. Nussinov,et al.  Folding and binding cascades: Dynamic landscapes and population shifts , 2008, Protein science : a publication of the Protein Society.

[47]  M. Dundr,et al.  The nucleolus: an old factory with unexpected capabilities. , 2000, Trends in cell biology.

[48]  Alexei Kurakin,et al.  Self-organization versus watchmaker: molecular motors and protein translocation. , 2006, Bio Systems.

[49]  Cvc Carlijn Bouten,et al.  Cells, gels and the engines of life , 2003 .

[50]  R. Paul,et al.  Compartmentation of glycolytic and glycogenolytic metabolism in vascular smooth muscle. , 1983, Science.

[51]  Alexei Kurakin,et al.  Self-Organization versus Watchmaker : stochasticity and determinism in molecular and cell biology , 2004 .

[52]  M. Nomura,et al.  Mutational Analysis of the Structure and Localization of the Nucleolus in the Yeast Saccharomyces cerevisiae , 1998, The Journal of cell biology.

[53]  M. Wyss,et al.  Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis. , 1992, The Biochemical journal.

[54]  T Misteli,et al.  Protein dynamics: implications for nuclear architecture and gene expression. , 2001, Science.

[55]  J. Trempe Molecular biology of the cell, 3rd edition Bruce Alberts, Dennis Bray, Julian Lewis, Martin Raff, Keith Roberts and James D. Watson, Garland Publishing, 1994, 559.95 (xiii + 1294 pages), ISBN 0-815-31619-4 , 1995, Trends in Endocrinology & Metabolism.

[56]  Shmuel Sattath,et al.  How reliable are experimental protein-protein interaction data? , 2003, Journal of molecular biology.

[57]  Karl Münger,et al.  Diagnostic cellular organization features extracted from autofluorescence images. , 2007, Optics letters.

[58]  Xibao Liu,et al.  TRPC1: the link between functionally distinct store-operated calcium channels. , 2007, Cell calcium.

[59]  Harry B Gray,et al.  Electron tunneling through proteins , 2003, Quarterly Reviews of Biophysics.

[60]  Hans Frauenfelder,et al.  Proteins: Paradigms of complexity , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[61]  H. Frauenfelder,et al.  Slaving: Solvent fluctuations dominate protein dynamics and functions , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[62]  J. Heuser,et al.  Whatever happened to the ‘microtrabecular concept’? , 2002, Biology of the cell.

[63]  C. Masters,et al.  Cellular differentiation and the microcompartmentation of glycolysis , 1991, Mechanisms of Ageing and Development.

[64]  B Chance,et al.  Studies of photosynthesis using a pulsed laser. I. Temperature dependence of cytochrome oxidation rate in chromatium. Evidence for tunneling. , 1966, Biophysical journal.

[65]  Frédéric Bringaud,et al.  Metabolic functions of glycosomes in trypanosomatids. , 2006, Biochimica et biophysica acta.

[66]  Luisa Montecchi-Palazzi,et al.  Selectivity and promiscuity in the interaction network mediated by protein recognition modules , 2004, FEBS letters.

[67]  Denys N. Wheatley,et al.  Intracellular Organization: Evolutionary Origins and Possible Consequences to Metabolic Rate Control in Vertebrates , 1991 .

[68]  I. Prigogine,et al.  Order out of chaos , 1984 .

[69]  Sharon Hammes-Schiffer,et al.  Hydrogen tunneling and protein motion in enzyme reactions , 2006, Accounts of chemical research.

[70]  Thomas A. Bobik,et al.  Protein Content of Polyhedral Organelles Involved in Coenzyme B12-Dependent Degradation of 1,2-Propanediol in Salmonella enterica Serovar Typhimurium LT2 , 2003, Journal of bacteriology.

[71]  M. DePristo,et al.  Simultaneous determination of protein structure and dynamics , 2005, Nature.

[72]  J. Davies,et al.  Molecular Biology of the Cell , 1983, Bristol Medico-Chirurgical Journal.

[73]  J. Finnigan How Nature Works; The science of self-organized criticality , 2001 .

[74]  David A Agard,et al.  Intramolecular signaling pathways revealed by modeling anisotropic thermal diffusion. , 2005, Journal of molecular biology.

[75]  Judit Ovádi,et al.  On the origin of intracellular compartmentation and organized metabolic systems , 2004, Molecular and Cellular Biochemistry.

[76]  Harry B. Gray,et al.  Electron-transfer kinetics of pentaammineruthenium(III)(histidine-33)-ferricytochrome c. Measurement of the rate of intramolecular electron transfer between redox centers separated by 15.ANG. in a protein , 1982 .

[77]  K. Porter,et al.  The cytomatrix: a short history of its study , 1984, The Journal of cell biology.

[78]  Bradford W. Gibson,et al.  Characterization of the human heart mitochondrial proteome , 2003, Nature Biotechnology.

[79]  Michele Vendruscolo,et al.  A Coupled Equilibrium Shift Mechanism in Calmodulin-Mediated Signal Transduction , 2008, Structure.

[80]  J. Clegg,et al.  Cellular infrastructure and metabolic organization. , 1992, Current topics in cellular regulation.

[81]  Constance J Jeffery,et al.  Moonlighting proteins: old proteins learning new tricks. , 2003, Trends in genetics : TIG.

[82]  Etienne Gagnon,et al.  The Phagosome Proteome: Insight into Phagosome Functions , 2001 .

[83]  H. Eppenberger,et al.  Adult rat cardiomyocytes cultured in creatine-deficient medium display large mitochondria with paracrystalline inclusions, enriched for creatine kinase , 1991, The Journal of cell biology.

[84]  Marjan S. Bolouri,et al.  Integrated Analysis of Protein Composition, Tissue Diversity, and Gene Regulation in Mouse Mitochondria , 2003, Cell.

[85]  C. Yanofsky,et al.  The exclusion of free indole as an intermediate in the biosynthesis of tryptophan in Neurospora crassa. , 1958, Biochimica et biophysica acta.

[86]  Kirsten Jørgensen,et al.  Metabolon formation and metabolic channeling in the biosynthesis of plant natural products. , 2005, Current opinion in plant biology.

[87]  D. Spector,et al.  Nuclear choreography: interpretations from living cells. , 2003, Current opinion in cell biology.

[88]  Douglas J Slotta,et al.  Composition of the Synaptic PSD-95 Complex*S , 2007, Molecular & Cellular Proteomics.

[89]  Sean R. Collins,et al.  Toward a Comprehensive Atlas of the Physical Interactome of Saccharomyces cerevisiae*S , 2007, Molecular & Cellular Proteomics.

[90]  S. Penman,et al.  Rethinking cell structure. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[91]  Tom Misteli,et al.  The Dynamics of Postmitotic Reassembly of the Nucleolus , 2000, The Journal of cell biology.

[92]  Alexei Kurakin,et al.  Self‐organization versus Watchmaker: ambiguity of molecular recognition and design charts of cellular circuitry , 2007, Journal of molecular recognition : JMR.

[93]  W. V. van Cappellen,et al.  Nuclear Dynamics of PCNA in DNA Replication and Repair , 2005, Molecular and Cellular Biology.

[94]  Grégoire Nicolis,et al.  Self-Organization in nonequilibrium systems , 1977 .

[95]  T. Misteli The concept of self-organization in cellular architecture , 2001, The Journal of cell biology.

[96]  Francesco Difato,et al.  Creatine kinase binds more firmly to the M-band of rabbit skeletal muscle myofibrils in the presence of its substrates , 2007, Molecular and Cellular Biochemistry.

[97]  James H. Brown,et al.  The fourth dimension of life: fractal geometry and allometric scaling of organisms. , 1999, Science.

[98]  A. Hudder,et al.  Organization of Mammalian Cytoplasm , 2003, Molecular and Cellular Biology.

[99]  Jim Grigsby,et al.  Neurodynamics of personality , 2000 .

[100]  N. Goodey,et al.  Allosteric regulation and catalysis emerge via a common route. , 2008, Nature chemical biology.

[101]  R. Lomax,et al.  Calcium leak from intracellular stores--the enigma of calcium signalling. , 2002, Cell calcium.

[102]  Mohammad Mainul Islam,et al.  A Novel Branched-chain Amino Acid Metabolon , 2007, Journal of Biological Chemistry.

[103]  L. Sweetlove,et al.  Enolase takes part in a macromolecular complex associated to mitochondria in yeast. , 2006, Biochimica et biophysica acta.

[104]  Rommie E. Amaro,et al.  A network of conserved interactions regulates the allosteric signal in a glutamine amidotransferase. , 2007, Biochemistry.

[105]  Jeffrey M. Hausdorff,et al.  Fractal dynamics in physiology: Alterations with disease and aging , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[106]  D. Fell,et al.  The small world of metabolism , 2000, Nature Biotechnology.

[107]  N. Heintz,et al.  Evidence that the pre-mRNA splicing factor Clf1p plays a role in DNA replication in Saccharomyces cerevisiae. , 2002, Genetics.

[108]  Thomas Kodadek,et al.  Recruitment of a 19S Proteasome Subcomplex to an Activated Promoter , 2002, Science.

[109]  Michele Vendruscolo,et al.  Dynamic Visions of Enzymatic Reactions , 2006, Science.

[110]  Edward E. Ruppert,et al.  Invertebrate Zoology: A Functional Evolutionary Approach , 1974 .

[111]  Charles A Price,et al.  A general model for allometric covariation in botanical form and function , 2007, Proceedings of the National Academy of Sciences.

[112]  S. Maloy,et al.  PutA protein, a membrane-associated flavin dehydrogenase, acts as a redox-dependent transcriptional regulator. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[113]  Mark A. Wilson,et al.  Intrinsic motions along an enzymatic reaction trajectory , 2007, Nature.

[114]  I. Wool Extraribosomal functions of ribosomal proteins. , 1996, Trends in biochemical sciences.

[115]  R. Jensen Enzyme recruitment in evolution of new function. , 1976, Annual review of microbiology.

[116]  G. Crabtree,et al.  Identity of 4a-carbinolamine dehydratase, a component of the phenylalanine hydroxylation system, and DCoH, a transregulator of homeodomain proteins. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[117]  J. Groves,et al.  Myoglobin catalyzes its own nitration. , 2001, Journal of the American Chemical Society.

[118]  Michele Vendruscolo,et al.  Structural biology. Dynamic visions of enzymatic reactions. , 2006, Science.

[119]  H. Herzel,et al.  Is there a bias in proteome research? , 2001, Genome research.

[120]  James H. Brown,et al.  The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization , 2005, Journal of Experimental Biology.

[121]  R A Coulson,et al.  Metabolic rate and the flow theory: a study in chemical engineering. , 1986, Comparative biochemistry and physiology. A, Comparative physiology.

[122]  J. Klinman,et al.  Tunneling and dynamics in enzymatic hydride transfer. , 2006, Chemical reviews.

[123]  Philip S Low,et al.  Assembly and regulation of a glycolytic enzyme complex on the human erythrocyte membrane. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[124]  M. H. Regenmortel,et al.  Reductionism and the search for structure-function relationships in antibody molecules. , 2002 .

[125]  Per Bak,et al.  How Nature Works: The Science of Self‐Organized Criticality , 1997 .

[126]  F R Opperdoes The glycosome of trypanosomes and Leishmania. , 1990, Biochemical Society transactions.

[127]  T Shinozaki,et al.  Tumor cell autocrine motility factor is the neuroleukin/phosphohexose isomerase polypeptide. , 1996, Cancer research.

[128]  A. Szent-Györgyi,et al.  TOWARDS A NEW BIOCHEMISTRY? , 1941, Science.

[129]  M. J. Moné,et al.  Xeroderma Pigmentosum Group A Protein Loads as a Separate Factor onto DNA Lesions , 2003, Molecular and Cellular Biology.

[130]  Alexei Kurakin,et al.  The universal principles of self-organization and the unity of Nature and knowledge , 2007 .

[131]  H Frauenfelder,et al.  The role of structure, energy landscape, dynamics, and allostery in the enzymatic function of myoglobin , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[132]  H. Wolfson,et al.  Access the most recent version at doi: 10.1110/ps.21302 References , 2001 .

[133]  John B Rundle,et al.  Self-organized complexity in the physical, biological, and social sciences , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[134]  D N Wheatley,et al.  Random walks and cell size. , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.

[135]  S. Benkovic,et al.  Relating protein motion to catalysis. , 2006, Annual review of biochemistry.

[136]  J. Horgan The end of Science , 2016 .

[137]  Alexei Kurakin,et al.  Self-organization vs Watchmaker: stochastic gene expression and cell differentiation , 2004, Development Genes and Evolution.

[138]  G. Karpen,et al.  A Drosophila rRNA gene located in euchromatin is active in transcription and nucleolus formation. , 1988, Genes & development.

[139]  Vladimir N Uversky,et al.  What does it mean to be natively unfolded? , 2002, European journal of biochemistry.

[140]  L. Kay,et al.  Intrinsic dynamics of an enzyme underlies catalysis , 2005, Nature.

[141]  H. Beinert,et al.  Purification and characterization of cytosolic aconitase from beef liver and its relationship to the iron-responsive element binding protein , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[142]  B. Chance,et al.  Electron Tunnelling in Cytochromes , 1967, Nature.

[143]  J Ovádi,et al.  Macromolecular compartmentation and channeling. , 2000, International review of cytology.

[144]  Wim Vermeulen,et al.  Nuclear dynamics of RAD52 group homologous recombination proteins in response to DNA damage , 2002, The EMBO journal.

[145]  D. Boehr,et al.  The Dynamic Energy Landscape of Dihydrofolate Reductase Catalysis , 2006, Science.

[146]  M. Mann,et al.  Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[147]  D. Kern,et al.  Dynamic personalities of proteins , 2007, Nature.

[148]  B. Snel,et al.  Comparative assessment of large-scale data sets of protein–protein interactions , 2002, Nature.

[149]  P. Berger,et al.  Social Construction of Reality , 1991, The SAGE International Encyclopedia of Mass Media and Society.

[150]  Andrew L. Lee,et al.  Evaluation of energetic and dynamic coupling networks in a PDZ domain protein. , 2006, Journal of molecular biology.

[151]  D N Wheatley,et al.  What determines the basal metabolic rate of vertebrate cells in vivo? , 1994, Bio Systems.

[152]  G. Ling,et al.  Life at the Cell and Below-Cell Level: The Hidden History of a Fundamental Revolution in Biology , 2001 .

[153]  N. Revue,et al.  Auteurs Année Titre Editeur Lieu , issue, pages Infos complémentaires (redondant mais voir si info requise) The social construction of reality New York: Doubleday , 1967 .

[154]  Zene The 5th Dimension , 2010 .

[155]  Hubert Dominique Becker,et al.  The transamidosome: a dynamic ribonucleoprotein particle dedicated to prokaryotic tRNA-dependent asparagine biosynthesis. , 2007, Molecular cell.

[156]  Stephen J Benkovic,et al.  Reversible Compartmentalization of de Novo Purine Biosynthetic Complexes in Living Cells , 2008, Science.

[157]  M. Ménache,et al.  Fractal geometry of airway remodeling in human asthma. , 2005, American journal of respiratory and critical care medicine.

[158]  A. Eke,et al.  Fractal characterization of complexity in dynamic signals: application to cerebral hemodynamics. , 2009, Methods in molecular biology.

[159]  James H Brown,et al.  Allometric scaling of metabolic rate from molecules and mitochondria to cells and mammals , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[160]  Alexei Kurakin,et al.  Stochastic Cell , 2005, IUBMB life.

[161]  Xavier Collet,et al.  Ecto-F1Fo ATP synthase/F1 ATPase: metabolic and immunological functions , 2006, Current opinion in lipidology.

[162]  X S Xie,et al.  Single molecule physics and chemistry. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[163]  Frank A Witzmann,et al.  A proteomic survey of rat cerebral cortical synaptosomes , 2005, Proteomics.

[164]  Thomas A. Bobik,et al.  PduA Is a Shell Protein of Polyhedral Organelles Involved in Coenzyme B12-Dependent Degradation of 1,2-Propanediol in Salmonella enterica Serovar Typhimurium LT2 , 2002, Journal of bacteriology.

[165]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[166]  F. Raushel,et al.  Tunneling of intermediates in enzyme-catalyzed reactions. , 2006, Current opinion in chemical biology.

[167]  Christopher J. Oldfield,et al.  Intrinsically disordered proteins in human diseases: introducing the D2 concept. , 2008, Annual review of biophysics.

[168]  A. Halestrap,et al.  Recent progress in elucidating the molecular mechanism of the mitochondrial permeability transition pore. , 2008, Biochimica et biophysica acta.

[169]  J. Fiori,et al.  Analysis of glycolytic enzyme co-localization in Drosophila flight muscle , 2003, Journal of Experimental Biology.

[170]  Thomas A. Bobik,et al.  Polyhedral organelles compartmenting bacterial metabolic processes , 2006, Applied Microbiology and Biotechnology.

[171]  P. Srere,et al.  Why are enzymes so big , 1984 .

[172]  X. Xie,et al.  Protein Conformational Dynamics Probed by Single-Molecule Electron Transfer , 2003, Science.

[173]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[174]  Yuan-Ping Pang,et al.  Cryptic proteolytic activity of dihydrolipoamide dehydrogenase , 2007, Proceedings of the National Academy of Sciences.

[175]  C. Hardin,et al.  Overexpression of caveolin‐1 results in increased plasma membrane targeting of glycolytic enzymes: The structural basis for a membrane associated metabolic compartment , 2006, Journal of cellular biochemistry.

[176]  Eric J. Deeds,et al.  A simple physical model for scaling in protein-protein interaction networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[177]  Patrik R. Jones,et al.  Metabolon formation in dhurrin biosynthesis. , 2008, Phytochemistry.

[178]  Changhuei Yang,et al.  Cellular organization and substructure measured using angle-resolved low-coherence interferometry. , 2002, Biophysical journal.