A geometrical approach to curvature continuous joints of rational curves
暂无分享,去创建一个
[1] J. C. F. Haase. Zur Theorie der ebenen Curvennter Ordnung mit $$\frac{{(n - 1)(n - 2)}}{2}$$ Doppel- und Rückkehrpunkten , 1870 .
[2] Richard R. Patterson,et al. Projective transformations of the parameter of a Bernstein-Bézier curve , 1985, TOGS.
[3] H. Smith. On the Focal Properties of Homographic Figures , 1866 .
[4] Tim N. T. Goodman,et al. Joining rational curves smoothly , 1991, Comput. Aided Geom. Des..
[5] Wendelin L. F. Degen,et al. Some remarks on Bézier curves , 1988, Comput. Aided Geom. Des..
[6] Wolfgang Böhm. Rational geometric splines , 1987, Comput. Aided Geom. Des..
[7] G. Farin. Algorithms for rational Bézier curves , 1983 .