Derivatives of the approximated electrostatic potentials in the fragment molecular orbital method

The electrostatic potential in the Fragment Molecular Orbital (FMO) method describes the effect of the environment upon fragments, but approximations are necessary to achieve linear scaling. We have developed the derivative of the point charge approximation in this study to enable accurate and fast gradient calculations for geometry optimizations and molecular dynamics of large systems. The accuracy is tested in comparison with the numeric gradient for solvated sodium cation, water cluster, α-helix of polyalanine, and hydrated chignolin. The errors are found to be reduced by approximately one order of magnitude.

[1]  Ye Mei,et al.  A new quantum method for electrostatic solvation energy of protein. , 2006, The Journal of chemical physics.

[2]  A. Imamura,et al.  Efficient and accurate calculations on the electronic structure of B-type poly(dG).poly(dC) DNA by elongation method: first step toward the understanding of the biological properties of aperiodic DNA. , 2007, The Journal of chemical physics.

[3]  T. Nakano,et al.  Parallelized integral-direct CIS(D) calculations with multilayer fragment molecular orbital scheme , 2007 .

[4]  Yuto Komeiji,et al.  Fragment molecular orbital-based molecular dynamics (FMO-MD), a quantum simulation tool for large molecular systems , 2009 .

[5]  Kazuo Kitaura,et al.  The importance of three-body terms in the fragment molecular orbital method. , 2004, The Journal of chemical physics.

[6]  Mark S. Gordon,et al.  A new hierarchical parallelization scheme: Generalized distributed data interface (GDDI), and an application to the fragment molecular orbital method (FMO) , 2004, J. Comput. Chem..

[7]  Lucas Visscher,et al.  A subsystem density-functional theory approach for the quantum chemical treatment of proteins. , 2008, The Journal of chemical physics.

[8]  Wei Li,et al.  Geometry optimizations and vibrational spectra of large molecules from a generalized energy-based fragmentation approach. , 2008, The journal of physical chemistry. A.

[9]  P. Kollman,et al.  A well-behaved electrostatic potential-based method using charge restraints for deriving atomic char , 1993 .

[10]  Yuto Komeiji,et al.  Fragment molecular orbital method: analytical energy gradients , 2001 .

[11]  Kazuo Kitaura,et al.  Coupled-cluster theory based upon the fragment molecular-orbital method. , 2005, The Journal of chemical physics.

[12]  D. Truhlar,et al.  Electrostatically Embedded Many-Body Expansion for Simulations. , 2008, Journal of chemical theory and computation.

[13]  Kaori Fukuzawa,et al.  Application of the fragment molecular orbital method for determination of atomic charges on polypeptides. II. Towards an improvement of force fields used for classical molecular dynamics simulations , 2009 .

[14]  Kwang S. Kim,et al.  Theory and applications of computational chemistry : the first forty years , 2005 .

[15]  K. Kitaura,et al.  Time-dependent density functional theory with the multilayer fragment molecular orbital method , 2007 .

[16]  Anuja P. Rahalkar,et al.  Enabling ab initio Hessian and frequency calculations of large molecules. , 2008, The Journal of chemical physics.

[17]  Jan H. Jensen,et al.  Covalent bond fragmentation suitable to describe solids in the fragment molecular orbital method. , 2008, The journal of physical chemistry. A.

[18]  Michael A Collins,et al.  Molecular potential energy surfaces constructed from interpolation of systematic fragment surfaces. , 2007, The Journal of chemical physics.

[19]  Marat Valiev,et al.  Fast electron correlation methods for molecular clusters without basis set superposition errors. , 2008, The Journal of chemical physics.

[20]  Noriyuki Kurita,et al.  Fragment molecular orbital method with density functional theory and DIIS convergence acceleration , 2003 .

[21]  Kaori Fukuzawa,et al.  Application of the fragment molecular orbital method for determination of atomic charges on polypeptides , 2007 .

[22]  Kazuo Kitaura,et al.  Polarizable continuum model with the fragment molecular orbital‐based time‐dependent density functional theory , 2008, J. Comput. Chem..

[23]  S. Huzinaga 1994 Polanyi Award Lecture Concept of active electrons in chemistry , 1995 .

[24]  Kazuo Kitaura,et al.  Extending the power of quantum chemistry to large systems with the fragment molecular orbital method. , 2007, The journal of physical chemistry. A.

[25]  Masami Uebayasi,et al.  The fragment molecular orbital method for geometry optimizations of polypeptides and proteins. , 2007, The journal of physical chemistry. A.

[26]  Takeshi Ishikawa,et al.  Fragment Molecular Orbital method‐based Molecular Dynamics (FMO‐MD) as a simulator for chemical reactions in explicit solvation , 2009, J. Comput. Chem..

[27]  K. Kitaura,et al.  Fragment molecular orbital method: an approximate computational method for large molecules , 1999 .

[28]  Yuji Mochizuki,et al.  Configuration interaction singles method with multilayer fragment molecular orbital scheme , 2005 .

[29]  Shinya Honda,et al.  10 residue folded peptide designed by segment statistics. , 2004, Structure.

[30]  Alessandro Pedretti,et al.  VEGA: a versatile program to convert, handle and visualize molecular structure on Windows-based PCs. , 2002, Journal of molecular graphics & modelling.

[31]  Mark S. Gordon,et al.  An effective fragment method for modeling solvent effects in quantum mechanical calculations , 1996 .

[32]  Lou Massa,et al.  The kernel energy method of quantum mechanical approximation carried to fourth-order terms , 2008, Proceedings of the National Academy of Sciences.

[33]  Kazuo Kitaura,et al.  Multiconfiguration self-consistent-field theory based upon the fragment molecular orbital method. , 2005, The Journal of chemical physics.

[34]  Takeshi Ishikawa,et al.  Fragment molecular orbital calculations on large scale systems containing heavy metal atom , 2006 .

[35]  Kazuo Kitaura,et al.  On the accuracy of the 3-body fragment molecular orbital method (FMO) applied to density functional theory , 2004 .

[36]  Kazuo Kitaura,et al.  The three-body fragment molecular orbital method for accurate calculations of large systems , 2006 .

[37]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[38]  Kazuo Kitaura,et al.  Second order Møller-Plesset perturbation theory based upon the fragment molecular orbital method. , 2004, The Journal of chemical physics.

[39]  Kaori Fukuzawa,et al.  Fragment molecular orbital method: use of approximate electrostatic potential , 2002 .

[40]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[41]  Y. Yamaguchi,et al.  A New Dimension to Quantum Chemistry: Analytic Derivative Methods in AB Initio Molecular Electronic Structure Theory , 1994 .

[42]  Kazuo Kitaura,et al.  Time-dependent density functional theory based upon the fragment molecular orbital method. , 2007, The Journal of chemical physics.