Scikit-learn: Machine Learning in Python

Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems. This package focuses on bringing machine learning to non-specialists using a general-purpose high-level language. Emphasis is put on ease of use, performance, documentation, and API consistency. It has minimal dependencies and is distributed under the simplified BSD license, encouraging its use in both academic and commercial settings. Source code, binaries, and documentation can be downloaded from http://scikit-learn.sourceforge.net.

[1]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[2]  Steve R. Gunn,et al.  Result Analysis of the NIPS 2003 Feature Selection Challenge , 2004, NIPS.

[3]  Paul F. Dubois,et al.  Guest Editor's Introduction: Python: Batteries Included , 2007, Computing in Science & Engineering.

[4]  Paul F. D Ubois Python: Batteries Included , 2007 .

[5]  Stefan Pollmann,et al.  PyMVPA: a Python Toolbox for Multivariate Pattern Analysis of fMRI Data , 2009, Neuroinformatics.

[6]  Chih-Jen Lin,et al.  LIBLINEAR: A Library for Large Linear Classification , 2008, J. Mach. Learn. Res..

[7]  Niko Wilbert,et al.  Modular Toolkit for Data Processing (MDP): A Python Data Processing Framework , 2008, Frontiers Neuroinformatics.

[8]  Mark Tygert,et al.  A Randomized Algorithm for Principal Component Analysis , 2008, SIAM J. Matrix Anal. Appl..

[9]  Stephen M. Omohundro,et al.  Five Balltree Construction Algorithms , 2009 .

[10]  Trevor Hastie,et al.  Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.

[11]  Gunnar Rätsch,et al.  The SHOGUN Machine Learning Toolbox , 2010, J. Mach. Learn. Res..

[12]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[13]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[14]  Gaël Varoquaux,et al.  A supervised clustering approach for fMRI-based inference of brain states , 2011, Pattern Recognit..