A Second Order Time Homogenized Model for Sediment Transport

A multiscale method for the hyperbolic systems governing sediment transport in a subcritical case is developed. The scale separation of this problem is due to the fact that the sediment transport is much slower than flow velocity. We first derive a zeroth order homogenized model and then propose a first order correction. It is revealed that the first order correction for hyperbolic systems has to be applied on the characteristic speed of slow variables in a one dimensional case. In a two dimensional case, besides the characteristic speed, the source term is also corrected. We develop a second order numerical scheme following the framework of heterogeneous multiscale method. The numerical results in both one and two dimensional cases demonstrate the effectiveness and efficiency of our method.

[1]  P. K. Sweby,et al.  A high‐resolution scheme for the equations governing 2D bed‐load sediment transport , 2005 .

[2]  Imad Elmahi,et al.  Linearized implicit time advancing and defect correction applied to sediment transport simulations , 2012 .

[3]  E Weinan,et al.  The heterogeneous multiscale method* , 2012, Acta Numerica.

[4]  D. Pokrajac,et al.  An efficient and flexible solver for the simulation of the morphodynamics of fast evolving flows on coarse sediment beaches , 2012 .

[5]  Yves Zech,et al.  A Godunov method for the computation of erosional shallow water transients , 2003 .

[6]  Carlos Parés,et al.  Two-dimensional sediment transport models in shallow water equations. A second order finite volume approach on unstructured meshes , 2009 .

[7]  Maurizio Brocchini,et al.  A multi-purpose, intra-wave, shallow water hydro-morphodynamic solver , 2012 .

[8]  Justin Hudson,et al.  Formulations for Numerically Approximating Hyperbolic Systems Governing Sediment Transport , 2003, J. Sci. Comput..

[9]  R. Müller,et al.  Formulas for Bed-Load transport , 1948 .

[10]  Manuel Jesús Castro Díaz,et al.  A Duality Method for Sediment Transport Based on a Modified Meyer-Peter & Müller Model , 2011, J. Sci. Comput..

[11]  Weiming Wu Computational River Dynamics , 2007 .

[12]  Fayssal Benkhaldoun,et al.  Solution of the Sediment Transport Equations Using a Finite Volume Method Based on Sign Matrix , 2009, SIAM J. Sci. Comput..

[13]  J. Cunge,et al.  Practical aspects of computational river hydraulics , 1980 .

[14]  Luka Sopta,et al.  Balanced finite volume WENO and central WENO schemes for the shallow water and the open-channel flow equations , 2004 .

[15]  A. I. Delis,et al.  Relaxation approximation to bed-load sediment transport , 2008 .

[16]  Javier Murillo,et al.  A 2D weakly-coupled and efficient numerical model for transient shallow flow and movable bed , 2014 .

[17]  Ruo Li,et al.  Robust a Simulation for Shallow Flows with Friction on Rough Topography , 2013 .

[18]  Kyu Hong Kim,et al.  Accurate, efficient and monotonic numerical methods for multi-dimensional compressible flows Part II: Multi-dimensional limiting process , 2005 .

[19]  Randall J. LeVeque,et al.  A Wave Propagation Method for Conservation Laws and Balance Laws with Spatially Varying Flux Functions , 2002, SIAM J. Sci. Comput..

[20]  Van Rijn,et al.  Sediment transport; Part I, Bed load transport , 1984 .

[21]  Enrique D. Fernández-Nieto,et al.  Sediment transport models in Shallow Water equations and numerical approach by high order finite volume methods , 2008 .

[22]  R. Luque Erosion And Transport Of Bed-Load Sediment , 1976 .

[23]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[24]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[25]  Javier Murillo,et al.  An Exner-based coupled model for two-dimensional transient flow over erodible bed , 2010, J. Comput. Phys..

[26]  S. Keller Coastal Bottom Boundary Layers And Sediment Transport , 2016 .

[27]  Enrique D. Fernández-Nieto,et al.  AN ENERGETICALLY CONSISTENT VISCOUS SEDIMENTATION MODEL , 2009 .

[28]  R. Soulsby Dynamics of marine sands : a manual for practical applications , 1997 .

[29]  Stéphane Cordier,et al.  Bedload transport in shallow water models: Why splitting (may) fail, how hyperbolicity (can) help , 2011 .

[30]  C. Angelopoulos High resolution schemes for hyperbolic conservation laws , 1992 .

[31]  L. Rijn Principles of sediment transport in rivers, estuaries and coastal seas , 1993 .

[32]  Magnus Larson,et al.  A general formula for non-cohesive bed load sediment transport , 2005 .

[33]  Michael C. Quick,et al.  Sediment transport by waves and currents , 1983 .

[34]  Tim Chesher,et al.  Numerical approaches for 1D morphodynamic modelling , 2005 .

[35]  Sediment transport technology : water and sediment dynamics : solutions manual , 1992 .

[36]  B. Parlett The Algebraic Eigenvalue Problem (J. H. Wilkinson) , 1966 .

[37]  John Pitlick,et al.  Sediment Transport Primer: Estimating Bed-Material Transport in Gravel-Bed Rivers , 2012 .

[38]  J. Murillo,et al.  Finite volumes for 2D shallow-water flow with bed-load transport on unstructured grids , 2012 .