A comprehensive numerical model of steady state saltation (COMSALT)

[1] The blowing of sand by wind, known as saltation, ejects dust aerosols into the atmosphere, creates sand dunes, and erodes geological features. We present a comprehensive numerical model of steady state saltation (COMSALT) that, in contrast to most previous studies, can reproduce a wide range of measurements and can simulate saltation over mixed soils. COMSALT calculates the motion of saltating particles due to gravity, fluid drag, particle spin, fluid shear, and turbulence and explicitly accounts for the retardation of the wind due to drag from saltating particles. Furthermore, we included a novel physically based parameterization of the ejection of surface particles by impacting saltating particles which matches experimental results. COMSALT is the first numerical saltation model to reproduce measurements of the wind shear velocity at the impact threshold (i.e., the lowest shear velocity for which saltation is possible) and of the aerodynamic roughness length in saltation. It also reproduces a range of other saltation processes, including profiles of the wind speed and particle mass flux, and the size distribution of saltating particles. As such, COMSALT is the first physically based numerical model to reproduce such a wide range of experimental data. Since we use a minimum of empirical relations, COMSALT can be easily adapted to study saltation under a variety of physical conditions, such as saltation on other planets, saltation under water, and saltating snow.

[1]  H. Charnock Wind stress on a water surface , 1955 .

[2]  J. C. R. Hunt,et al.  Saltation and incipient suspension above a flat particle bed below a turbulent boundary layer , 2000, Journal of Fluid Mechanics.

[3]  Liejin Guo,et al.  Reconstructing the vertical distribution of the aeolian saltation mass flux based on the probability distribution of lift-off velocity , 2008 .

[4]  I. McEwan,et al.  Adaptation of the near-surface wind to the development of sand transport , 1993, Journal of Fluid Mechanics.

[5]  K. Rasmussen,et al.  On the efficiency of vertical array aeolian field traps , 1998 .

[6]  H. Heywood The Physics of Blown Sand and Desert Dunes , 1941, Nature.

[7]  P. Saffman The lift on a small sphere in a slow shear flow , 1965, Journal of Fluid Mechanics.

[8]  R. Anderson Eolian Sediment Transport as a Stochastic Process: The Effects of a Fluctuating Wind on Particle Trajectories , 1987, The Journal of Geology.

[9]  Chunlai Zhang,et al.  Effects of the Magnus and Saffman forces on the saltation trajectories of sand grain , 2007 .

[10]  W. Dietrich Settling velocity of natural particles , 1982 .

[11]  R. Bagnold The nature of saltation and of ‘bed-load’ transport in water , 1973, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[12]  J. Kok,et al.  Electrification of wind‐blown sand on Mars and its implications for atmospheric chemistry , 2009, 0901.3672.

[13]  José S Andrade,et al.  Giant saltation on Mars , 2008, Proceedings of the National Academy of Sciences.

[14]  B. Marticorena,et al.  Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme , 1995 .

[15]  G. Williams SOME ASPECTS OF THE EOLIAN SALTATION LOAD , 1964 .

[16]  S. L. Namikas A Conceptual Model of Energy Partitioning in the Collision of Saltating Grains with an Unconsolidated Sediment Bed , 2006 .

[17]  R. Leuning,et al.  Source/sink distributions of heat, water vapour, carbon dioxide and methane in a rice canopy estimated using Lagrangian dispersion analysis , 2000 .

[18]  Michael Sørensen,et al.  Vertical variation of particle speed and flux density in aeolian saltation: Measurement and modeling , 2008 .

[19]  R. Pelt,et al.  The effects of slope and slope position on local and upstream fluid threshold friction velocities , 2008 .

[20]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[21]  E. Loth Lift of a Spherical Particle Subject to Vorticity and/or Spin , 2008 .

[22]  Brian L. Sawford,et al.  Lagrangian statistical simulation of the turbulent motion of heavy particles , 1991 .

[23]  R. Leuninga,et al.  Source / sink distributions of heat , water vapour , carbon dioxide and methane in a rice canopy estimated using Lagrangian dispersion analysis , 2000 .

[24]  M. A. Rice,et al.  Collisions of quartz grains with a sand bed: The influence of incident angle , 1989 .

[25]  Ning Huang,et al.  A model of the trajectories and midair collision probabilities of sand particles in a steady state saltation cloud , 2007 .

[26]  I. McEwan,et al.  Observations of collisions of saltating grains with a granular bed from high‐speed cine‐film , 1996 .

[27]  N. Mahowald,et al.  Global Iron Connections Between Desert Dust, Ocean Biogeochemistry, and Climate , 2005, Science.

[28]  I. McEwan,et al.  Numerical model of the saltation cloud , 1991 .

[29]  Masahiko Arakawa,et al.  Size Dependence of Restitution Coefficients of Ice in Relation to Collision Strength , 1998 .

[30]  José S Andrade,et al.  Aeolian transport layer. , 2006, Physical review letters.

[31]  Nilton O. Renno,et al.  Electrical Activity and Dust Lifting on Earth, Mars, and Beyond , 2008 .

[32]  I. McEwan,et al.  An experimental study of multiple grain‐size ejecta produced by collisions of saltating grains with a flat bed , 1995 .

[33]  H J Herrmann,et al.  Continuum saltation model for sand dunes. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Yaping Shao,et al.  The overshoot and equilibration of saltation , 1992 .

[35]  L. Prandtl,et al.  The Mechanics of Viscous Fluids , 1935 .

[36]  Xiaojing Zheng,et al.  Laboratory measurement of saltating sand particles' angular velocities and simulation of its effect on saltation trajectory , 2007 .

[37]  J. Penner,et al.  Introduction to special section: Outstanding problems in quantifying the radiative impacts of mineral dust , 2001 .

[38]  J. McLaughlin Inertial migration of a small sphere in linear shear flows , 1991, Journal of Fluid Mechanics.

[39]  B. R. White,et al.  Two-phase measurements of saltating turbulent boundary layer flow , 1982 .

[40]  Y. Shao Physics and Modelling of Wind Erosion , 2001 .

[41]  Benoît Camenen,et al.  Simple and General Formula for the Settling Velocity of Particles , 2007 .

[42]  Edwin F. Ford,et al.  The transport of sand by wind , 1957 .

[43]  D. Sherman An equilibrium relationship for shear velocity and apparent roughness lenght in aeolian saltation , 1992 .

[44]  J. Kok,et al.  Enhancement of the emission of mineral dust aerosols by electric forces , 2006 .

[45]  Nick Middleton,et al.  Desert Dust in the Global System , 2006 .

[46]  R. Anderson,et al.  Grain scale simulations of loose sedimentary beds: the example of grain-bed impacts in aeolian saltation , 1993 .

[47]  R. Greeley,et al.  Field measurements of the flux and speed of wind‐blown sand , 1996 .

[48]  Yuan Wang,et al.  Statistical analysis of sand grain/bed collision process recorded by high‐speed digital camera , 2008 .

[49]  R. Bagnold,et al.  The Measurement of Sand Storms , 1938 .

[50]  L. Oger,et al.  Discrete Element Method studies of the collision of one rapid sphere on 2D and 3D packings , 2005, The European physical journal. E, Soft matter.

[51]  A. Tanière,et al.  On the behaviour of solid particles in a horizontal boundary layer with turbulence and saltation effects , 1997 .

[52]  Bruno Andreotti,et al.  A two-species model of aeolian sand transport , 2004, Journal of Fluid Mechanics.

[53]  R. Bagnold,et al.  The Physics of Blown Sand and Desert Dunes , 1941 .

[54]  N. Cheng Simplified Settling Velocity Formula for Sediment Particle , 1997 .

[55]  J. Finnigan,et al.  Coherent eddies and turbulence in vegetation canopies: The mixing-layer analogy , 1996 .

[56]  Yaping Shao,et al.  Effect of Saltation Bombardment on the Entrainment of Dust by Wind , 1993 .

[57]  B. White,et al.  Soil Transport by Winds on Mars , 1979 .

[58]  Daniel J Lacks,et al.  Electrification of granular systems of identical insulators. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[59]  Robert M. Haberle,et al.  Global warming and climate forcing by recent albedo changes on Mars , 2007, Nature.

[60]  M. A. Rice,et al.  Collisions in aeolian saltation , 1986 .

[61]  Frans T. M. Nieuwstadt,et al.  Random walk models for particle displacements in inhomogeneous unsteady turbulent flows , 1985 .

[62]  M. Sørensen,et al.  On the effect of mid-air collisions on aeolian saltation , 1996 .

[63]  D. Thomas,et al.  Wind as a Geological Process on Earth, Mars, Venus and Titan , 1988 .

[64]  P. Haff,et al.  Simulation of Eolian Saltation , 1988, Science.

[65]  Y. Shao A Lagrangian stochastic model for nonpassive particle diffusion in turbulent flows , 1995 .

[66]  J. Hunt,et al.  A Lagrangian statistical analysis of diffusion from a ground‐level source in a turbulent boundary layer , 1979 .

[67]  J. T. Jenkins,et al.  Saltating particles in a turbulent boundary layer: experiment and theory , 2009, Journal of Fluid Mechanics.

[68]  Michael Sørensen,et al.  On the rate of aeolian sand transport , 2004 .

[69]  J. C. R. Hunt,et al.  Saltating particles over flat beds , 1993, Journal of Fluid Mechanics.

[70]  D. Jackson,et al.  Preliminary results from a field investigation of aeolian sand transport using high resolution wind and transport measurements , 1997 .

[71]  Y. Shao,et al.  A simple expression for wind erosion threshold friction velocity , 2000 .

[72]  G. Csanady Turbulent Diffusion of Heavy Particles in the Atmosphere , 1963 .

[73]  Robert S. Anderson,et al.  Sediment transport by wind: Toward a general model , 1986 .

[74]  Bradley T. Werner,et al.  A physical model of wind-blown sand transport , 1987 .

[75]  J. Iversen,et al.  The effect of surface slope on saltation threshold , 1994 .

[76]  N. P. Woodruff,et al.  The Physics of Wind Erosion and its Control1 , 1963 .

[77]  E. Farrell,et al.  Process-Scaling Issues For Aeolian Transport Modelling in Field and Wind Tunnel Experiments : Roughness Length and Mass Flux Distributions , 2007 .

[78]  Reynolds On the Formulation of Lagrangian Stochastic Models for Heavy-Particle Trajectories. , 2000, Journal of colloid and interface science.

[79]  Bideau,et al.  Experimental study of the collision process of a grain on a two-dimensional granular bed , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[80]  Y. Zhou,et al.  The effect of electrostatic force on the evolution of sand saltation cloud , 2006, The European physical journal. E, Soft matter.

[81]  P. Haff,et al.  The grain-bed impact process in aeolian saltation , 1986 .

[82]  M. Sørensen An analytic model of wind-blown sand transport , 1991 .

[83]  Nilton O Renno,et al.  Electrostatics in wind-blown sand. , 2008, Physical review letters.

[84]  J. Iversen,et al.  The effect of wind speed and bed slope on sand transport , 1999 .

[85]  L. Oger,et al.  Collision process between an incident bead and a three-dimensional granular packing. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[86]  Domenico Anfossi,et al.  Estimation of the ratio between the Lagrangian and Eulerian time scales in an atmospheric boundary layer generated by large eddy simulation , 2006 .

[87]  Bruce R. White,et al.  Magnus effect in saltation , 1977, Journal of Fluid Mechanics.

[88]  R. Haberle,et al.  Global warming and climate forcing by recent albedo changes on Mars , 2007, Nature.

[89]  J. E. Ungar,et al.  Steady state saltation in air , 1987 .

[90]  S. L. Namikas,et al.  Field measurement and numerical modelling of aeolian mass flux distributions on a sandy beach , 2003 .

[91]  J. Lumley,et al.  Some measurements of particle velocity autocorrelation functions in a turbulent flow , 1971, Journal of Fluid Mechanics.

[92]  John D. Wilson,et al.  Review of Lagrangian stochastic models for trajectories in the turbulent atmosphere , 1996 .

[93]  R. Bagnold,et al.  The Movement of Desert Sand , 1935 .

[94]  B. T. Werner,et al.  A Steady-State Model of Wind-Blown Sand Transport , 1990, The Journal of Geology.

[95]  Z. Dong,et al.  Simulation of the probability of midair interparticle collisions in an aeolian saltating cloud , 2005 .

[96]  Geert Sterk,et al.  Causes, consequences and control of wind erosion in Sahelian Africa: a review , 2003 .

[97]  S. I. Rubinow,et al.  The transverse force on a spinning sphere moving in a viscous fluid , 1961, Journal of Fluid Mechanics.

[98]  M. Mikami,et al.  Heterogeneous Saltation: Theory, Observation and Comparison , 2005 .

[99]  Yaping Shao,et al.  Numerical Modelling of Saltation in the Atmospheric Surface Layer , 1999 .

[100]  M. Raupach,et al.  Saltation layers, vegetation canopies and roughness lengths , 1991 .

[101]  M. Nemoto,et al.  Numerical simulation of snow saltation and suspension in a turbulent boundary layer , 2004 .

[102]  Robert S. Anderson,et al.  Wind modification and bed response during saltation of sand in air , 1991 .

[103]  J. Garatuza,et al.  MATADOR 2002: A pilot field experiment on convective plumes and dust devils , 2004 .

[104]  Douglas J. Sherman,et al.  Aerodynamic roughness lengths over movable beds: Comparison of wind tunnel and field data , 2008 .

[105]  P. R. Owen,et al.  Saltation of uniform grains in air , 1964, Journal of Fluid Mechanics.